IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v38y2017i6p1-24.html
   My bibliography  Save this article

Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future

Author

Listed:
  • Nidhi R. Santen
  • Mort D. Webster
  • David Popp
  • Ignacio Pérez-Arriaga

Abstract

ABSTRACT A pressing question facing policy makers today in developing a long-term strategy to manage carbon emissions from the electric power sector is how to appropriately balance investment in R&D for driving innovation in emerging low- and zerocarbon technologies with investment in commercially available technologies for meeting existing energy needs. Likewise, policy makers need to determine how to allocate limited funding across multiple technologies. Unfortunately, existing modeling tools to study these questions lack a realistic representation of electric power system operations, the innovation process, or both. In this paper, we present a new modeling framework for long-term R&D and electricity generation capacity planning that combines an economic representation of endogenous non-linear technical change with a detailed representation of the power system. The model captures the complementary nature of technologies in the power sector; physical integration constraints of the system; and the opportunity to build new knowledge capital as a non-linear function of R&D and accumulated knowledge, reflective of the diminishing marginal returns to research inherent in the energy innovation process. Through a series of numerical experiments and sensitivity analyses— with and without carbon policy—we show how using frameworks that do not incorporate these features can over- or under-estimate the value of different emerging technologies, and potentially misrepresent the cost-effectiveness of R&D opportunities.

Suggested Citation

  • Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2017. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future," The Energy Journal, , vol. 38(6), pages 1-24, November.
  • Handle: RePEc:sae:enejou:v:38:y:2017:i:6:p:1-24
    DOI: 10.5547/01956574.38.6.nsan
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.38.6.nsan
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.38.6.nsan?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    2. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    2. Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).
    3. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    4. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
    5. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
    6. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future," NBER Working Papers 20783, National Bureau of Economic Research, Inc.
    7. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    8. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    9. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    10. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2017. "Inter-temporal R&D and capital investment portfolios for the electricity industrys low carbon future," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    11. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).
    13. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry's Low Carbon Future," CESifo Working Paper Series 5139, CESifo.
    14. Xiang Huang & Yapan Qu & Zhentao Zhu & Qiuchi Wu, 2023. "Techno-Economic Analysis of Photovoltaic Hydrogen Production Considering Technological Progress Uncertainty," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    15. Aliaga Lordemann, Javier & Herrerra Jiménez, Alejandro, 2014. "Energy-Mix Scenarios for Bolivia," Documentos de trabajo 8/2014, Instituto de Investigaciones Socio-Económicas (IISEC), Universidad Católica Boliviana.
    16. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    17. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    18. Anelí Bongers, 2017. "Learning and forgetting in the jet fighter aircraft industry," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-19, September.
    19. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    20. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:38:y:2017:i:6:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.