IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v27y2006i1_supplp241-258.html
   My bibliography  Save this article

Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG

Author

Listed:
  • Terry Barker
  • Haoran Pan
  • Jonathan Köhler
  • Rachel Warren
  • Sarah Winne

Abstract

This paper reports how endogenous economic growth and technological change have been introduced into a global econometric model. It explains how further technological change might be induced by mitigation policies so as to reduce greenhouse gas emissions and stabilize atmospheric concentrations. These are the first results of a structural econometric approach to modeling the global economy using the model E3MG (energy-environment-economy model of the globe), which in turn constitutes one component in the Community Integrated Assessment System (CIAS) of the UK Tyndall Centre. The model is simplified to provide a post-Keynesian view of the long-run, with an indicator of technological progress affecting each region’s exports and energy use. When technological progress is endogenous in this way, long-run growth in global GDP is partly explained by the model. Average permit prices and tax rates about $430/tC (1995) prices after 2050 are sufficient to stabilize atmospheric concentrations at 450ppm CO2 after 2100. They also lead to higher economic growth.

Suggested Citation

  • Terry Barker & Haoran Pan & Jonathan Köhler & Rachel Warren & Sarah Winne, 2006. "Decarbonizing the Global Economy with Induced Technological Change: Scenarios to 2100 using E3MG," The Energy Journal, , vol. 27(1_suppl), pages 241-258, January.
  • Handle: RePEc:sae:enejou:v:27:y:2006:i:1_suppl:p:241-258
    DOI: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI1-12
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI1-12
    Download Restriction: no

    File URL: https://libkey.io/10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI1-12?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dermot Gately & Hillard G. Huntington, 2002. "The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand," The Energy Journal, , vol. 23(1), pages 19-55, January.
    2. Ebling, Günther & Janz, Norbert, 1999. "Export and innovation activities in the German service sector: empirical evidence at the firm level," ZEW Discussion Papers 99-53, ZEW - Leibniz Centre for European Economic Research.
    3. Antoine Magnier & Joël Toujas-Bernate, 1994. "Technology and trade: Empirical evidences for the major five industrialized countries," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 130(3), pages 494-520, September.
    4. Stephen J. DeCanio, 2003. "Economic Models of Climate Change," Palgrave Macmillan Books, Palgrave Macmillan, number 978-0-230-50946-7.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laursen, Keld & Meliciani, Valentina, 2010. "The role of ICT knowledge flows for international market share dynamics," Research Policy, Elsevier, vol. 39(5), pages 687-697, June.
    2. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    3. Anna Dahlqvist & Tommy Lundgren & Per-Olov Marklund, 2021. "The Rebound Effect in Energy-Intensive Industries:A Factor Demand Model with Asymmetric Price Response," The Energy Journal, , vol. 42(3), pages 177-204, May.
    4. Leach, Andrew & Mason, Charles F. & Veld, Klaas van ‘t, 2011. "Co-optimization of enhanced oil recovery and carbon sequestration," Resource and Energy Economics, Elsevier, vol. 33(4), pages 893-912.
    5. Eric Fosu Oteng-Abayie & Prosper Awuni Ayinbilla & Maame Esi Eshun, 2018. "Macroeconomic Determinants of Crude Oil Demand in Ghana," Global Business Review, International Management Institute, vol. 19(4), pages 873-888, August.
    6. Ansgar Belke & Daniel Gros, 2014. "A simple model of an oil based global savings glut—the “China factor”and the OPEC cartel," International Economics and Economic Policy, Springer, vol. 11(3), pages 413-430, September.
    7. Jeffrey C. Peters & Thomas W. Hertel, 2017. "Achieving the Clean Power Plan 2030 CO2 Target with the New Normal in Natural Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    8. Alberini, Anna & Bezhanishvili, Levan & Ščasný, Milan, 2022. "“Wild” tariff schemes: Evidence from the Republic of Georgia," Energy Economics, Elsevier, vol. 110(C).
    9. Liddle, Brantley & Parker, Steven, 2022. "One more for the road: Reconsidering whether OECD gasoline income and price elasticities have changed over time," Energy Economics, Elsevier, vol. 114(C).
    10. Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011. "Improved interval estimation of long run response from a dynamic linear model: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
    11. Huntington, Hillard G., 2004. "Shares, gaps and the economy's response to oil disruptions," Energy Economics, Elsevier, vol. 26(3), pages 415-424, May.
    12. Jože P. Damijan & Črt Kostevc & Sašo Polanec, 2010. "From Innovation to Exporting or Vice Versa?," The World Economy, Wiley Blackwell, vol. 33(3), pages 374-398, March.
    13. Bergantino, Angela Stefania & Intini, Mario & Perdiguero, Jordi, 2020. "Pay cycles and fuel price: a quasi experimental approach," The Warwick Economics Research Paper Series (TWERPS) 1288, University of Warwick, Department of Economics.
    14. Rabindra Nepal & Muhammad Indra al Irsyad & Tooraj Jamasb, 2021. "Sectoral Electricity Demand and Direct Rebound Effects inNew Zealand," The Energy Journal, , vol. 42(4), pages 153-174, July.
    15. Selien De Schryder & Gert Peersman, 2016. "The U.S. Dollar Exchange Rate and the Demand for Oil," The Energy Journal, , vol. 37(1), pages 90-114, January.
    16. Brandt, Adam R. & Plevin, Richard J. & Farrell, Alexander E., 2010. "Dynamics of the oil transition: Modeling capacity, depletion, and emissions," Energy, Elsevier, vol. 35(7), pages 2852-2860.
    17. Pedro Linares & Xavier Labandeira, 2010. "Energy Efficiency: Economics And Policy," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 573-592, July.
    18. Kamiar Mohaddes, 2013. "Econometric modelling of world oil supplies: terminal price and the time to depletion," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 37(2), pages 162-193, June.
    19. Tavassoli, Sam, 2013. "The Role of Product Innovation Output on Export Behavior of Firms," Papers in Innovation Studies 2013/38, Lund University, CIRCLE - Centre for Innovation Research.
    20. Aune, Finn Roar & Mohn, Klaus & Osmundsen, Petter & Rosendahl, Knut Einar, 2010. "Financial market pressure, tacit collusion and oil price formation," Energy Economics, Elsevier, vol. 32(2), pages 389-398, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:27:y:2006:i:1_suppl:p:241-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.