IDEAS home Printed from https://ideas.repec.org/a/rsr/supplm/v61y2013i2p66-72.html
   My bibliography  Save this article

General Aspects Regarding the Methodology for Prediction Risk

Author

Listed:
  • Victoria Gabriela ANGHELACHE

    (Academy of Economic Studies, Bucharest)

  • Dumitru Cristian OANEA

    (Academy of Economic Studies, Bucharest)

  • Bogdan ZUGRAVU

    (Academy of Economic Studies, Bucharest)

Abstract

In order to measure the total risk to which an investor or a financial institution is exposed when they invest in a financial asset, there needs to be a tool to capture this risk. The most widely used tool in measuring the total risk is Value at Risk. The first parameter that must be estimated is represented by the decay factor, because based on its value we will estimate further the volatility and Value at Risk. However, we are not just interested in computing the VaR for all considered models, but moreover we want to test if models used in these estimations are accurate and able to predict the risk. To achieve this objective we will use two types of test: unconditional coverage test and conditional coverage test.

Suggested Citation

  • Victoria Gabriela ANGHELACHE & Dumitru Cristian OANEA & Bogdan ZUGRAVU, 2013. "General Aspects Regarding the Methodology for Prediction Risk," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 61(2), pages 66-72, May.
  • Handle: RePEc:rsr:supplm:v:61:y:2013:i:2:p:66-72
    as

    Download full text from publisher

    File URL: http://www.revistadestatistica.ro/suplimente/2013/2_2013/srrs2_2013a09.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. So, Mike K.P. & Yu, Philip L.H., 2006. "Empirical analysis of GARCH models in value at risk estimation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(2), pages 180-197, April.
    2. Hammoudeh, Shawkat & Malik, Farooq & McAleer, Michael, 2011. "Risk management of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(4), pages 435-441.
    3. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
    4. Fernando Caio Galdi & Leonel Molero Pereira, 2007. "Value at Risk (VaR) Using Volatility Forecasting Models: EWMA, GARCH and Stochastic Volatility," Brazilian Business Review, Fucape Business School, vol. 4(1), pages 74-94, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dumitru-Cristian OANEA & Gabriela-Victoria ANGHELACHE, 2014. "Systemic Risk Caused By Romanian Financial Intermediaries During Financial Crisis: A Covar Approach," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 14, pages 171-178, December.
    2. Gabriela Anghelache & Dumitru-Cristian Oanea, 2014. "Main Romanian Commercial Banks’ Systemic Risk during Financial Crisis: a CoVar Approach," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 6(2), pages 069-080, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    2. repec:ipg:wpaper:2013-009 is not listed on IDEAS
    3. Laura Garcia‐Jorcano & Alfonso Novales, 2021. "Volatility specifications versus probability distributions in VaR forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 189-212, March.
    4. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    5. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    6. Mei-Ling Tang & Trung K. Do, 2019. "In search of robust methods for multi-currency portfolio construction by value at risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(1), pages 107-126, March.
    7. repec:ipg:wpaper:9 is not listed on IDEAS
    8. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.
    9. Kulp-Tåg, Sofie, 2007. "An Empirical Investigation of Value-at-Risk in Long and Short Trading Positions," Working Papers 526, Hanken School of Economics.
    10. repec:ipg:wpaper:201409 is not listed on IDEAS
    11. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    12. Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2013. "Long memory and asymmetry in the volatility of commodity markets and Basel Accord: choosing between models," Working Papers 2013-9, Department of Research, Ipag Business School.
    13. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    14. Angelidis, Timotheos & Degiannakis, Stavros, 2007. "Backtesting VaR Models: A Τwo-Stage Procedure," MPRA Paper 96327, University Library of Munich, Germany.
    15. Bogdan ZUGRAVU & Dumitru Cristian OANEA & Victoria Gabriela ANGHELACHE, 2013. "Analysis Based on the Risk Metrics Model," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 61(2), pages 145-154, May.
    16. Mabrouk, Samir & Saadi, Samir, 2012. "Parametric Value-at-Risk analysis: Evidence from stock indices," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(3), pages 305-321.
    17. Köksal, Bülent & Orhan, Mehmet, 2012. "Market risk of developed and developing countries during the global financial crisis," MPRA Paper 37523, University Library of Munich, Germany.
    18. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Non-linear volatility dynamics and risk management of precious metals," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 183-202.
    19. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    20. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    21. Sheng‐Tun Li & Kuei‐Chen Chiu & Chien‐Chang Wu, 2023. "Apply big data analytics for forecasting the prices of precious metals futures to construct a hedging strategy for industrial material procurement," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 942-959, March.
    22. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
    23. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Tahir, Hammad, 2021. "What do we know about the inflation-hedging property of precious metals in Africa? The case of leading producers of the commodities," Resources Policy, Elsevier, vol. 72(C).

    More about this item

    Keywords

    financial instrument; prediction; risk metrics; risk prediction;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsr:supplm:v:61:y:2013:i:2:p:66-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adrian Visoiu (email available below). General contact details of provider: https://edirc.repec.org/data/stagvro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.