IDEAS home Printed from https://ideas.repec.org/a/rmk/rmkbae/v8y2021i1p121-148.html
   My bibliography  Save this article

Relationships among US S&P500 Stock Index, its Futures and NASDAQ Index Futures with Volatility Spillover and Jump Diffusion: Modeling and Hedging Performance

Author

Listed:
  • Hsiang-Hsi Liu
  • Yu-Cheng Lin

Abstract

This study takes the US S&P500 stock index cash, futures and NASDAQ stock index futures as the main research objects, and applies the ARJI (autoregressive jump intensity model) VEC GJR-GARCH model to examine the co-integration, volatility spillover, jump behavior and hedge performance of the three markets. With the rapid circulation of new information, the financial market will often fluctuate under the impact of new information. Investors will have different and timely responses to emergencies, and this event will have an impact on the stock market. When the event is unexpected or abnormal, the financial market will have huge fluctuations, and this kind of fluctuation is a jump. The empirical results found that the three markets have linkages and volatility spillover effects, and there are indeed discontinuous jumps. Two-way volatility spillovers between S&P500 index cash and futures, and only one-way volatility spillovers from S&P500 futures to the Nasdaq futures market. International investors need to consider information from their own-market volatility (risk) as well as information on volatility spillovers (risk) from other markets. The jump frequency is not a fixed constant, that is, the jump frequency (strength) generated by abnormal information changes over time. In addition, the results of this research also found that the ARJI VEC GJR-GARCH model can better capture the risk of fluctuations in price discontinuities after adding jump factors to the hedging performance estimated by the ARJI VEC GJR-GARCH model. The hedging performance can be more effective, which is conducive to investors' risk management decisions. Also, the performance of direct hedging that is better than the performance of cross hedging.

Suggested Citation

  • Hsiang-Hsi Liu & Yu-Cheng Lin, 2021. "Relationships among US S&P500 Stock Index, its Futures and NASDAQ Index Futures with Volatility Spillover and Jump Diffusion: Modeling and Hedging Performance," Bulletin of Applied Economics, Risk Market Journals, vol. 8(1), pages 121-148.
  • Handle: RePEc:rmk:rmkbae:v:8:y:2021:i:1:p:121-148
    as

    Download full text from publisher

    File URL: https://www.riskmarket.co.uk/bae/journals-articles/issues/relationships-among-us-sp500-stock-index-its-futures-and-nasdaq-index-futures-with-volatility-spillover-and-jump-diffusion-modeling-and-hedging-performance/?download=attachment.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Creel, Michael & Kristensen, Dennis, 2015. "ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models," Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
    2. Ulyah, Siti Maghfirotul & Lin, Xenos Chang-Shuo & Miao, Daniel Wei-Chung, 2018. "Pricing short-dated foreign equity options with a bivariate jump-diffusion model with correlated fat-tailed jumps," Finance Research Letters, Elsevier, vol. 24(C), pages 113-128.
    3. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-389, July.
    4. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    9. Fan, Chenxi & Luo, Xingguo & Wu, Qingbiao, 2017. "Stochastic volatility vs. jump diffusions: Evidence from the Chinese convertible bond market," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 1-16.
    10. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    11. Gerald H. L. Cheang & Carl Chiarella & Andrew Ziogas, 2013. "The representation of American options prices under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 241-253, January.
    12. Zhou, Chunyang & Wu, Chongfeng & Wang, Yudong, 2019. "Dynamic portfolio allocation with time-varying jump risk," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 113-124.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    14. Leland L. Johnson, 1960. "The Theory of Hedging and Speculation in Commodity Futures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 27(3), pages 139-151.
    15. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317-317.
    16. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    17. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    18. Wing H. Chan & Denise Young, 2006. "Jumping hedges: An examination of movements in copper spot and futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(2), pages 169-188, February.
    19. Todorov, Viktor, 2009. "Estimation of continuous-time stochastic volatility models with jumps using high-frequency data," Journal of Econometrics, Elsevier, vol. 148(2), pages 131-148, February.
    20. Qingfu Liu & Michael T. Chng & Dongxia Xu, 2014. "Hedging Industrial Metals With Stochastic Volatility Models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(8), pages 704-730, August.
    21. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
    22. Peter Fortune, 1999. "Are stock returns different over weekends? a jump diffusion analysis of the \"weekend effect\"," New England Economic Review, Federal Reserve Bank of Boston, issue Sep, pages 3-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Lei & Chen, Yan & Bouri, Elie, 2024. "Time-varying jump intensity and volatility forecasting of crude oil returns," Energy Economics, Elsevier, vol. 129(C).
    2. Chuang, Chung-Chu & Wang, Yi-Hsien & Yeh, Tsai-Jung & Chuang, Shuo-Li, 2014. "Backtesting VaR in consideration of the higher moments of the distribution for minimum-variance hedging portfolios," Economic Modelling, Elsevier, vol. 42(C), pages 15-19.
    3. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    4. Chin-Tsai Lin & Yi-Hsien Wang, 2005. "An Analysis of Political Changes on Nikkei 225 Stock Returns and Volatilities," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 169-183, May.
    5. Steeley, James M., 2006. "Volatility transmission between stock and bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(1), pages 71-86, February.
    6. Nelson, Daniel B., 1996. "Asymptotic filtering theory for multivariate ARCH models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 1-47.
    7. Geon Choe & Kyungsub Lee, 2014. "Conditional correlation in asset return and GARCH intensity model," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 197-224, July.
    8. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    9. Lin, Xiaoqiang & Chen, Qiang & Tang, Zhenpeng, 2014. "Dynamic hedging strategy in incomplete market: Evidence from Shanghai fuel oil futures market," Economic Modelling, Elsevier, vol. 40(C), pages 81-90.
    10. Francois Chesnay & Eric Jondeau, 2001. "Does Correlation Between Stock Returns Really Increase During Turbulent Periods?," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 30(1), pages 53-80, February.
    11. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    12. Yaya, OlaOluwa S. & Tumala, Mohammed M. & Udomboso, Christopher G., 2016. "Volatility persistence and returns spillovers between oil and gold prices: Analysis before and after the global financial crisis," Resources Policy, Elsevier, vol. 49(C), pages 273-281.
    13. DAVID G. McMILLAN & ALAN E. H. SPEIGHT, 2007. "Value‐at‐Risk in Emerging Equity Markets: Comparative Evidence for Symmetric, Asymmetric, and Long‐Memory GARCH Models," International Review of Finance, International Review of Finance Ltd., vol. 7(1‐2), pages 1-19, March.
    14. Ngo Thai Hung, 2021. "Volatility Behaviour of the Foreign Exchange Rate and Transmission Among Central and Eastern European Countries: Evidence from the EGARCH Model," Global Business Review, International Management Institute, vol. 22(1), pages 36-56, February.
    15. Yi-Hsien Wang & Chung-Chu Chuang, 2009. "Selecting the portfolio investment strategy under political structure change in United States," Quality & Quantity: International Journal of Methodology, Springer, vol. 43(5), pages 845-854, September.
    16. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    17. Kian Teng Kwek & Kuan Nee Koay, 2006. "Exchange rate volatility and volatility asymmetries: an application to finding a natural dollar currency," Applied Economics, Taylor & Francis Journals, vol. 38(3), pages 307-323.
    18. Geon Ho Choe & Kyungsub Lee, 2013. "Conditional correlation in asset return and GARCH intensity model," Papers 1311.4977, arXiv.org.
    19. Jacobi, Frank, 2005. "ARCH-Prozesse und ihre Erweiterungen - Eine empirische Untersuchung für Finanzmarktzeitreihen -," Arbeitspapiere des Instituts für Statistik und Ökonometrie 31, Johannes Gutenberg-Universität Mainz, Institut für Statistik und Ökonometrie.
    20. Beg, A.B.M. Rabiul Alam & Anwar, Sajid, 2012. "Sources of volatility persistence: A case study of the U.K. pound/U.S. dollar exchange rate returns," The North American Journal of Economics and Finance, Elsevier, vol. 23(2), pages 165-184.

    More about this item

    Keywords

    Jump Intensity; Jump Size; Co-integration; ARJI; VEC GJR-GARCH; Hedging Ratio; Hedging Performance.;
    All these keywords.

    JEL classification:

    • F30 - International Economics - - International Finance - - - General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rmk:rmkbae:v:8:y:2021:i:1:p:121-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.riskmarket.co.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.