IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0492.html
   My bibliography  Save this article

Using Google Trends to forecast migration from Russia: Search query aggregation and accounting for lag structure

Author

Listed:
  • Bronitsky, Georgy

    (HSE University, Moscow, Russian Federation)

  • Vakulenko, Elena

    (HSE University, Moscow, Russian Federation)

Abstract

This paper proposes a method for predicting migration based on search query data statistics using Google Trends Index (GTI). We improved the existing methodology in two directions: firstly, we proposed an approach for selecting key search queries and aggregating them based on various statistical criteria; secondly, we showed the importance of including in the migration model the time lag structure of search queries, depending on the goals of the migration and the associated GTIs. Based on the monthly data of the German statistical office on the volume of migration from Russia to Germany from January 2011 to August 2022, we demonstrate the efficiency of the proposed approaches. The results show that distributed lag migration models with GTI are better predict migration than SARIMA models. Average lag estimates, i.e. the response time of migration statistics to search queries on the topics “embassy”, “work” and “study”, turned out to be 5.6, 6.5 and 8 months, respectively. It is shown that in order to predict migration from Russia to Germany, it is sufficient to take into account only search queries related to the topic "embassy".

Suggested Citation

  • Bronitsky, Georgy & Vakulenko, Elena, 2024. "Using Google Trends to forecast migration from Russia: Search query aggregation and accounting for lag structure," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 73, pages 78-101.
  • Handle: RePEc:ris:apltrx:0492
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Andreea Avramescu & Arkadiusz Wiśniowski, 2021. "Now-casting Romanian migration into the United Kingdom by using Google Search engine data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(40), pages 1219-1254.
    2. Alexander Subbotin & Samin Aref, 2021. "Brain drain and brain gain in Russia: Analyzing international migration of researchers by discipline using Scopus bibliometric data 1996–2020," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(9), pages 7875-7900, September.
    3. Dean Fantazzini & Julia Pushchelenko & Alexey Mironenkov & Alexey Kurbatskii, 2021. "Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg," Forecasting, MDPI, vol. 3(4), pages 1-30, October.
    4. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    5. Philippe Wanner, 2021. "How well can we estimate immigration trends using Google data?," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(4), pages 1181-1202, August.
    6. Osnat Israeli, 2007. "A Shapley-based decomposition of the R-Square of a linear regression," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(2), pages 199-212, August.
    7. Böhme, Marcus H. & Gröger, André & Stöhr, Tobias, 2020. "Searching for a better life: Predicting international migration with online search keywords," Journal of Development Economics, Elsevier, vol. 142(C).
    8. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bert Leysen & Pieter-Paul Verhaeghe, 2023. "Searching for migration: estimating Japanese migration to Europe with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(5), pages 4603-4631, October.
    2. Andreea Avramescu & Arkadiusz Wiśniowski, 2021. "Now-casting Romanian migration into the United Kingdom by using Google Search engine data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(40), pages 1219-1254.
    3. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    4. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    5. Daniele Barchiesi & Helen Susannah Moat & Christian Alis & Steven Bishop & Tobias Preis, 2015. "Quantifying International Travel Flows Using Flickr," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-8, July.
    6. Breithaupt, Patrick & Kesler, Reinhold & Niebel, Thomas & Rammer, Christian, 2020. "Intangible capital indicators based on web scraping of social media," ZEW Discussion Papers 20-046, ZEW - Leibniz Centre for European Economic Research.
    7. Götz, Thomas B. & Knetsch, Thomas A., 2019. "Google data in bridge equation models for German GDP," International Journal of Forecasting, Elsevier, vol. 35(1), pages 45-66.
    8. Kristina Gligorić & Arnaud Chiolero & Emre Kıcıman & Ryen W. White & Robert West, 2022. "Population-scale dietary interests during the COVID-19 pandemic," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
    10. Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
    11. Oestmann Marco & Bennöhr Lars, 2015. "Determinants of house price dynamics. What can we learn from search engine data?," Review of Economics, De Gruyter, vol. 66(1), pages 99-127, April.
    12. Konstantin Boss & Andre Groeger & Tobias Heidland & Finja Krueger & Conghan Zheng, 2023. "Forecasting Bilateral Refugee Flows with High-dimensional Data and Machine Learning Techniques," Working Papers 1387, Barcelona School of Economics.
    13. Georg von Graevenitz & Christian Helmers & Valentine Millot & Oliver Turnbull, 2016. "Does Online Search Predict Sales? Evidence from Big Data for Car Markets in Germany and the UK," Working Papers 71, Queen Mary, University of London, School of Business and Management, Centre for Globalisation Research.
    14. Hulya Bakirtas & Vildan Gulpinar Demirci, 2022. "Can Google Trends data provide information on consumer’s perception regarding hotel brands?," Information Technology & Tourism, Springer, vol. 24(1), pages 57-83, March.
    15. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    16. Zhongchen Song & Tom Coupé, 2023. "Predicting Chinese consumption series with Baidu," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 21(3), pages 429-463, July.
    17. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Junzhao Ma & Dewi Tojib & Yelena Tsarenko, 2022. "Sex Robots: Are We Ready for Them? An Exploration of the Psychological Mechanisms Underlying People’s Receptiveness of Sex Robots," Journal of Business Ethics, Springer, vol. 178(4), pages 1091-1107, July.
    19. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    20. Jaroslav Pavlicek & Ladislav Kristoufek, 2015. "Nowcasting Unemployment Rates with Google Searches: Evidence from the Visegrad Group Countries," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-11, May.

    More about this item

    Keywords

    international migration; Russia; Germany; Google Trends; search queries; nowcasting; big data; forecasting.;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • J61 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Geographic Labor Mobility; Immigrant Workers

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.