IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0439.html
   My bibliography  Save this article

Stock market and cryptocurrency market volatility

Author

Listed:
  • Manevich, Vyacheslav

    (NRU HSE, Moscow, Russian Federation)

  • Peresetsky, Anatoly

    (NRU HSE, Moscow, Russian Federation)

  • Pogorelova, Polina

    (NRU HSE, Moscow, Russian Federation)

Abstract

In the last ten years, cryptocurrencies have developed rapidly, of which bitcoin has the largest capitalization. With the development of the cryptocurrency market, more and more investors include bitcoin in their asset portfolio. In this regard, the question of the relationship between the volatility of the cryptocurrency market and the stock market is of particular interest. This article analyzes the common stochastic component of the realized volatility of bitcoin and e-mini S&P futures. The assessment of the global stochastic component and its share in the volatility of the S&P 500 futures and bitcoin in the rolling window made it possible to analyze the dynamics of the relationship between the realized volatility of these two assets, as well as put forward a hypothesis about the causes and preconditions for volatility flows between the cryptocurrency market and the stock market

Suggested Citation

  • Manevich, Vyacheslav & Peresetsky, Anatoly & Pogorelova, Polina, 2022. "Stock market and cryptocurrency market volatility," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 65, pages 65-76.
  • Handle: RePEc:ris:apltrx:0439
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2022_65_065-076.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Cartea, Álvaro & Karyampas, Dimitrios, 2011. "Volatility and covariation of financial assets: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.
    4. Xin Wang & Xi Chen & Peng Zhao, 2020. "The Relationship Between Bitcoin and Stock Market," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 11(2), pages 22-35, April.
    5. Chang, Yoosoon & Isaac Miller, J. & Park, Joon Y., 2009. "Extracting a common stochastic trend: Theory with some applications," Journal of Econometrics, Elsevier, vol. 150(2), pages 231-247, June.
    6. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    7. Uzonwanne, Godfrey, 2021. "Volatility and return spillovers between stock markets and cryptocurrencies," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 30-36.
    8. Mardi Dungey & Vance L Martin & Adrian R Pagan, 2000. "A multivariate latent factor decomposition of international bond yield spreads," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 697-715.
    9. Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    10. López-Cabarcos, M. Ángeles & Pérez-Pico, Ada M. & Piñeiro-Chousa, Juan & Šević, Aleksandar, 2021. "Bitcoin volatility, stock market and investor sentiment. Are they connected?," Finance Research Letters, Elsevier, vol. 38(C).
    11. Achraf Ghorbel & Ahmed Jeribi, 2021. "Investigating the relationship between volatilities of cryptocurrencies and other financial assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 817-843, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pogorelova, Polina, 2024. "Investigation of the impact of uncertainty indices on Bitcoin volatility using the ARDL model," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 74, pages 35-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Apostolakis, George N., 2024. "Bitcoin price volatility transmission between spot and futures markets," International Review of Financial Analysis, Elsevier, vol. 94(C).
    2. Duan, Kun & Zhao, Yanqi & Urquhart, Andrew & Huang, Yingying, 2023. "Do clean and dirty cryptocurrencies connect with financial assets differently? The role of economic policy uncertainty," Energy Economics, Elsevier, vol. 127(PA).
    3. Collet, Jerome & Ielpo, Florian, 2018. "Sector spillovers in credit markets," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 267-278.
    4. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2021. "The impact of Euro through time: Exchange rate dynamics under different regimes," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1375-1408, January.
    5. Ha, Le Thanh & Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2024. "Dynamic interlinkages between carbon risk and volatility of green and renewable energy: A TVP-VAR analysis," Research in International Business and Finance, Elsevier, vol. 69(C).
    6. Okorie, David Iheke & Lin, Boqiang, 2022. "Givers never lack: Nigerian oil & gas asymmetric network analyses," Energy Economics, Elsevier, vol. 108(C).
    7. Mohamed Beraich & Salah Eddin El Main, 2022. "Volatility Spillover Effects in the Moroccan Interbank Sector before and during the COVID-19 Crisis," Risks, MDPI, vol. 10(6), pages 1-20, June.
    8. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    9. David Gabauer, 2020. "Volatility impulse response analysis for DCC‐GARCH models: The role of volatility transmission mechanisms," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 788-796, August.
    10. Guo, Li-Yang & Feng, Chao, 2021. "Are there spillovers among China's pilots for carbon emission allowances trading?," Energy Economics, Elsevier, vol. 103(C).
    11. Zhao, Xin & Ghaemi Asl, Mahdi & Rashidi, Muhammad Mahdi & Vasa, László & Shahzad, Umer, 2023. "Interoperability of the revolutionary blockchain architectures and Islamic and conventional technology markets: Case of Metaverse, HPB, and Bloknet," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 112-131.
    12. MacDonald, Ronald & Sogiakas, Vasilios & Tsopanakis, Andreas, 2018. "Volatility co-movements and spillover effects within the Eurozone economies: A multivariate GARCH approach using the financial stress index," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 17-36.
    13. Dimitrios Vortelinos & Konstantinos Gkillas (Gillas) & Costas Syriopoulos & Argyro Svingou, 2017. "Asymmetric and nonlinear inter-relations of US stock indices," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 14(1), pages 78-129, December.
    14. Fengler, Matthias R. & Herwartz, Helmut, 2015. "Measuring spot variance spillovers when (co)variances are time-varying – the case of multivariate GARCH models," Economics Working Paper Series 1517, University of St. Gallen, School of Economics and Political Science.
    15. Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Keagile Lesame & Elie Bouri & David Gabauer & Rangan Gupta, 2021. "On the Dynamics of International Real Estate Investment Trust Propagation Mechanisms: Evidence from Time-Varying Return and Volatility Connectedness Measures," Working Papers 202152, University of Pretoria, Department of Economics.
    17. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    18. Fengler, Matthias R. & Gisler, Katja I.M., 2015. "A variance spillover analysis without covariances: What do we miss?," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 174-195.
    19. Abubakr Naeem, Muhammad & Iqbal, Najaf & Lucey, Brian M. & Karim, Sitara, 2022. "Good versus bad information transmission in the cryptocurrency market: Evidence from high-frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    20. Zhang, Weiping & Zhuang, Xintian & Lu, Yang, 2020. "Spatial spillover effects and risk contagion around G20 stock markets based on volatility network," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    More about this item

    Keywords

    bitcoin; cryptocurrency; realized volatility; state–space model; S&P 500;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.