The Effect of Climate Change on Energy Consumption Using Smart Meter Dataset
Author
Abstract
Suggested Citation
DOI: https://doi.org/10.61506/01.00269
Download full text from publisher
References listed on IDEAS
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
- Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Junhong Qu & Xiaoli Hao, 2022. "Digital Economy, Financial Development, and Energy Poverty Based on Mediating Effects and a Spatial Autocorrelation Model," Sustainability, MDPI, vol. 14(15), pages 1-24, July.
- Ren, Siyu & Hao, Yu & Xu, Lu & Wu, Haitao & Ba, Ning, 2021. "Digitalization and energy: How does internet development affect China's energy consumption?," Energy Economics, Elsevier, vol. 98(C).
- Charfeddine, Lanouar & Umlai, Mohamed, 2023. "ICT sector, digitization and environmental sustainability: A systematic review of the literature from 2000 to 2022," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Chwiłkowska-Kubala, Anna & Cyfert, Szymon & Malewska, Kamila & Mierzejewska, Katarzyna & Szumowski, Witold, 2023. "The impact of resources on digital transformation in energy sector companies. The role of readiness for digital transformation," Technology in Society, Elsevier, vol. 74(C).
- Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
- Axenbeck, Janna & Niebel, Thomas, 2021.
"Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence,"
23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world
238007, International Telecommunications Society (ITS).
- Axenbeck, Janna & Niebel, Thomas, 2021. "Climate protection potentials of digitalized production processes: Microeconometric evidence?," ZEW Discussion Papers 21-105, ZEW - Leibniz Centre for European Economic Research.
- Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence?," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242369, Verein für Socialpolitik / German Economic Association.
- Shunbin Zhong & Huafu Shen & Ziheng Niu & Yang Yu & Lin Pan & Yaojun Fan & Atif Jahanger, 2022. "Moving towards Environmental Sustainability: Can Digital Economy Reduce Environmental Degradation in China?," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
- Ana Salomé García-Muñiz & María Rosalía Vicente, 2021. "The Effects of Informational Feedback on the Energy Consumption of Online Services: Some Evidence for the European Union," Energies, MDPI, vol. 14(10), pages 1-14, May.
- Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
- Zhipeng Yu & Yi Liu & Taihua Yan & Ming Zhang, 2024. "Carbon emission efficiency in the age of digital economy: New insights on green technology progress and industrial structure distortion," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4039-4057, July.
- Leslie Quitzow & Friederike Rohde, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," Urban Studies, Urban Studies Journal Limited, vol. 59(2), pages 341-359, February.
- Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
- Rongwu Zhang & Wenqiang Fu & Yingxu Kuang, 2022. "Can Digital Economy Promote Energy Conservation and Emission Reduction in Heavily Polluting Enterprises? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
- Bacha, Radia & Gasmi, Farid, 2022. "The broadband diffusion process and its determinants in Algeria: A simultaneous estimation," TSE Working Papers 22-1309, Toulouse School of Economics (TSE).
- Luyang Tang & Bangke Lu & Tianhai Tian, 2023. "The Effect of Input Digitalization on Carbon Emission Intensity: An Empirical Analysis Based on China’s Manufacturing," IJERPH, MDPI, vol. 20(4), pages 1-22, February.
- Quitzow, Leslie & Rohde, Friederike, 2022. "Imagining the smart city through smart grids? Urban energy futures between technological experimentation and the imagined low-carbon city," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 59(2), pages 341-359.
- Fang, Lei & He, Bin, 2023. "A deep learning framework using multi-feature fusion recurrent neural networks for energy consumption forecasting," Applied Energy, Elsevier, vol. 348(C).
- Jiayang Kong & Mark Goh & Yu Cao, 2024. "Can Digital Economy Development Facilitate Corporate ESG Performance?," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
- Peng, Hua-Rong & Qin, Xiong-Feng, 2024. "Digitalization as a trigger for a rebound effect of electricity use," Energy, Elsevier, vol. 300(C).
- Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
More about this item
Keywords
Energy Consumption; Smart Meter; Optimization; Machine Learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfh:bbejor:v:13:y:2024:i:1:p:777-783. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Muhammad Irfan Chani (email available below). General contact details of provider: https://edirc.repec.org/data/rffhlpk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.