IDEAS home Printed from https://ideas.repec.org/a/rfa/aefjnl/v5y2018i4p87-94.html
   My bibliography  Save this article

The Role of Financial Speculation in Copper Prices

Author

Listed:
  • Kegomoditswe Koitsiwe
  • Tsuyoshi Adachi

Abstract

The recently ended rise in commodity price boom and the ensuing spectacular price falls that followed, have inspired an interest among the researchers on the role played by other factors besides the physical supply and demand. This paper examines the role played by financial speculation in copper price boom during the last decade. Using least squares with breakpoints, the results indicate that from January 1993 to December 2016 LME real copper spot prices have been characterized by structural changes and its determinants significantly varies in distinct periods. The results reveal that, financial speculation accentuated copper price moves during the last decade. The results support the conclusion that, fundamentals alone cannot fully explain price moves.

Suggested Citation

  • Kegomoditswe Koitsiwe & Tsuyoshi Adachi, 2018. "The Role of Financial Speculation in Copper Prices," Applied Economics and Finance, Redfame publishing, vol. 5(4), pages 87-94, July.
  • Handle: RePEc:rfa:aefjnl:v:5:y:2018:i:4:p:87-94
    as

    Download full text from publisher

    File URL: http://redfame.com/journal/index.php/aef/article/view/3182/3537
    Download Restriction: no

    File URL: http://redfame.com/journal/index.php/aef/article/view/3182
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dées, Stéphane & Gasteuil, Audrey & Kaufmann, Robert K. & Mann, Michael, 2008. "Assessing the factors behind oil price changes," Working Paper Series 855, European Central Bank.
    2. Dees, Stephane & Karadeloglou, Pavlos & Kaufmann, Robert K. & Sanchez, Marcelo, 2007. "Modelling the world oil market: Assessment of a quarterly econometric model," Energy Policy, Elsevier, vol. 35(1), pages 178-191, January.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Franklin M. Fisher & Paul H. Cootner & Martin N. Baily, 1972. "An Econometric Model of the World Copper Industry," Bell Journal of Economics, The RAND Corporation, vol. 3(2), pages 568-609, Autumn.
    5. Yao, Yi-Ching, 1988. "Estimating the number of change-points via Schwarz' criterion," Statistics & Probability Letters, Elsevier, vol. 6(3), pages 181-189, February.
    6. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    7. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    8. Zhang, Yue-Jun & Fan, Ying & Tsai, Hsien-Tang & Wei, Yi-Ming, 2008. "Spillover effect of US dollar exchange rate on oil prices," Journal of Policy Modeling, Elsevier, vol. 30(6), pages 973-991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byungkwon Lim & Hyeon Sook Kim & Jaehwan Park, 2020. "Direct Effect of TC on the LME Copper Prices," Economies, MDPI, vol. 8(2), pages 1-9, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
    2. Prat, Georges & Uctum, Remzi, 2011. "Modelling oil price expectations: Evidence from survey data," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(3), pages 236-247, June.
    3. Devi, P. Indira & Shanmugam, K.R. & Jayasree, M.G., 2012. "Compensating Wages for Occupational Risks of Farm Workers in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-12.
    4. Kayhan, Selim & Adiguzel, Uğur & Bayat, Tayfur & Lebe, Fuat, 2010. "Causality Relationship between Real GDP and Electricity Consumption in Romania (2001-2010)," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 169-183, December.
    5. Mohitosh Kejriwal, 2020. "A Robust Sequential Procedure for Estimating the Number of Structural Changes in Persistence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(3), pages 669-685, June.
    6. Nusair, Salah A. & Olson, Dennis, 2019. "The effects of oil price shocks on Asian exchange rates: Evidence from quantile regression analysis," Energy Economics, Elsevier, vol. 78(C), pages 44-63.
    7. Jamel JOUINI & Mohamed BOUTAHAR, 2007. "wrong estimation of the true number of shifts in structural break models: Theoretical and numerical evidence," Economics Bulletin, AccessEcon, vol. 3(3), pages 1-10.
    8. Perron, Pierre, 2020. "L'estimation de modèles avec changements structurels multiples," L'Actualité Economique, Société Canadienne de Science Economique, vol. 96(4), pages 789-837, Décembre.
    9. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    10. Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019. "Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence," Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
    11. Francis Declerck & Jean-Pierre Indjehagopian & Frédéric Lantz, 2020. "Dynamics of biofuel prices on the European market: Impact of the EU environmental policy on the resources markets," Working Papers hal-02487491, HAL.
    12. Zijun Wang, 2006. "The joint determination of the number and the type of structural changes," Economics Letters, Elsevier, vol. 93(2), pages 222-227, November.
    13. Chulwoo Han & Abderrahim Taamouti, 2017. "Partial Structural Break Identification," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(2), pages 145-164, April.
    14. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    15. Florian Pein & Hannes Sieling & Axel Munk, 2017. "Heterogeneous change point inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1207-1227, September.
    16. Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
    17. Ben Salem, Leila & Nouira, Ridha & Jeguirim, Khaled & Rault, Christophe, 2022. "The determinants of crude oil prices: Evidence from ARDL and nonlinear ARDL approaches," Resources Policy, Elsevier, vol. 79(C).
    18. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    19. Francis Declerck & Jean-Pierre Indjehagopian & Frédéric Lantz, 2020. "Dynamics of Biofuel Prices on the European Market : Impact of the EU Environmental policy on the resources markets," Working Papers hal-03193880, HAL.
    20. Chao-Fu Yeh & Ming-Tsung Lee, 2019. "Effects of Taichung bus policy on ridership according to structural change analysis," Transportation, Springer, vol. 46(1), pages 1-16, February.

    More about this item

    Keywords

    copper price; LME spot price; structural changes; determinants; speculation;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfa:aefjnl:v:5:y:2018:i:4:p:87-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Redfame publishing (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.