IDEAS home Printed from https://ideas.repec.org/a/ptu/bdpart/e202014.html
   My bibliography  Save this article

House price forecasting and uncertainty: Examining Portugal and Spain

Author

Listed:
  • Paulo M.M. Rodrigues
  • Rita Fradique Lourenço
  • Robert Hill

Abstract

No abstract is available for this item.

Suggested Citation

  • Paulo M.M. Rodrigues & Rita Fradique Lourenço & Robert Hill, 2020. "House price forecasting and uncertainty: Examining Portugal and Spain," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:bdpart:e202014
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/re202014_en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Case Karl E. & Quigley John M. & Shiller Robert J., 2005. "Comparing Wealth Effects: The Stock Market versus the Housing Market," The B.E. Journal of Macroeconomics, De Gruyter, vol. 5(1), pages 1-34, May.
    2. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    3. Moretti, Laura & Onorante, Luca & Zakipour-Saber, Shayan, 2019. "Phillips curves in the euro area," Research Technical Papers 8/RT/19, Central Bank of Ireland.
    4. Kostas Tsatsaronis & Haibin Zhu, 2004. "What drives housing price dynamics: cross-country evidence," BIS Quarterly Review, Bank for International Settlements, March.
    5. James M. Poterba, 1991. "House Price Dynamics: The Role of Tax Policy," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 22(2), pages 143-204.
    6. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
    7. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    8. Bork, Lasse & Møller, Stig V., 2015. "Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection," International Journal of Forecasting, Elsevier, vol. 31(1), pages 63-78.
    9. Englund, Peter & Hwang, Min & Quigley, John M, 2002. "Hedging Housing Risk," The Journal of Real Estate Finance and Economics, Springer, vol. 24(1-2), pages 167-200, Jan.-Marc.
    10. Juan Carlos Cuestas & Merike Kukk, 2020. "The Spanish housing market: is it fundamentally broken?," Applied Economics Letters, Taylor & Francis Journals, vol. 27(15), pages 1295-1299, September.
    11. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(01), March.
    12. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    13. David C. Ling & Joseph T.L. Ooi & Thao T.T. Le, 2015. "Explaining House Price Dynamics: Isolating the Role of Nonfundamentals," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(S1), pages 87-125, March.
    14. Luís Martins & Renata Mesquita & Sónia Costa & Luísa Farinha, 2020. "Portuguese Household Finance and Consumption Survey: results for 2017 and comparison with the previous waves," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    15. Paulo M.M. Rodrigues & Rita Fradique Lourenço, 2015. "House prices: bubbles, exuberance or something else? Evidence from euro area countries," Working Papers w201517, Banco de Portugal, Economics and Research Department.
    16. Nicoletti, Giulio & Passaro, Raffaele, 2012. "Sometimes it helps: the evolving predictive power of spreads on GDP dynamics," Working Paper Series 1447, European Central Bank.
    17. Risse, Marian & Kern, Martin, 2016. "Forecasting house-price growth in the Euro area with dynamic model averaging," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 70-85.
    18. Dzielinski, Michal, 2012. "Measuring economic uncertainty and its impact on the stock market," Finance Research Letters, Elsevier, vol. 9(3), pages 167-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nonejad, Nima, 2021. "Predicting equity premium using dynamic model averaging. Does the state–space representation matter?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Jan Prüser, 2019. "Adaptive learning from model space," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(1), pages 29-38, January.
    3. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    4. Dong, Xiyong & Yoon, Seong-Min, 2019. "What global economic factors drive emerging Asian stock market returns? Evidence from a dynamic model averaging approach," Economic Modelling, Elsevier, vol. 77(C), pages 204-215.
    5. Krzysztof Drachal, 2018. "Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
    6. Paulo M.M. Rodrigues & Rita Fradique Lourenço, 2015. "House prices: bubbles, exuberance or something else? Evidence from euro area countries," Working Papers w201517, Banco de Portugal, Economics and Research Department.
    7. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    8. Benítez-Silva, Hugo & Eren, Selçuk & Heiland, Frank & Jiménez-Martín, Sergi, 2015. "How well do individuals predict the selling prices of their homes?," Journal of Housing Economics, Elsevier, vol. 29(C), pages 12-25.
    9. Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
    10. Wei, Yu & Cao, Yang, 2017. "Forecasting house prices using dynamic model averaging approach: Evidence from China," Economic Modelling, Elsevier, vol. 61(C), pages 147-155.
    11. Steven C. Bourassa & Donald R. Haurin & Jessica L. Haurin & Martin Hoesli & Jian Sun, 2009. "House Price Changes and Idiosyncratic Risk: The Impact of Property Characteristics," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 259-278, June.
    12. Paloma Taltavull de La Paz, 2021. "Predicting housing prices. A long term housing price path for Spanish regions," LARES lares-2021-4dra, Latin American Real Estate Society (LARES).
    13. Hanan Naser & Fatema Alaali, 2018. "Can oil prices help predict US stock market returns? Evidence using a dynamic model averaging (DMA) approach," Empirical Economics, Springer, vol. 55(4), pages 1757-1777, December.
    14. Robert A. Hill & Paulo M. M. Rodrigues, 2022. "Forgetting approaches to improve forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1356-1371, November.
    15. Lin, Boqiang & Su, Tong, 2021. "Do China's macro-financial factors determine the Shanghai crude oil futures market?," International Review of Financial Analysis, Elsevier, vol. 78(C).
    16. Sakar Hasan Hamza & Qingna Li, 2023. "The Dynamics of US Gasoline Demand and Its Prediction: An Extended Dynamic Model Averaging Approach," Energies, MDPI, vol. 16(12), pages 1-13, June.
    17. Paulo M.M. Rodrigues & Rita Fradique Lourenço, 2017. "House prices in Portugal - what happened since the crisis?," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
    18. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    19. Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
    20. Paulo M.M. Rodrigues & Matei Demetrescu, 2022. "Cross-Sectional Error Dependence in Panel Quantile Regressions," Working Papers w202213, Banco de Portugal, Economics and Research Department.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:bdpart:e202014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEE-NTD (email available below). General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.