IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_1992_num_106_5_5319.html
   My bibliography  Save this article

Modèles VAR et prévisions à court terme

Author

Listed:
  • Catherine Doz
  • Pierre Malgrange

Abstract

[fre] Modèles VAR et prévisions à court terme, . par Catherine Doz, Pierre Malgrange.. . Le but de cet article est d'évaluer l'aptitude d'un modèle VAR, utilisé comme une simple "boîte noire", à prévoir. Les résultats des estimations conduisent à retenir un modèle VAR avec relations de coïntégration, estimé par la méthode de Johansen. Il inclut les variables suivantes : Pib, consommation, importations, exportations, investissement. Pour les années étudiées, les performances de ce modèle sont assez voisines, pour certains horizons, de celles effectuées par les organismes de prévision. [spa] Utilización de modelos VAR para la previsión, . por Catherine Doz y Pierre Malgrange.. . El objeto perseguido por este artículo consiste en evaluar la aptitud de un modelo VAR, utilizado como una sencilla "caja negra" para la previsión. Los resultados de las evaluationes económicas conducen a adoptar un modelo VAR con relationes de cointegración, evaluado por el método de Johansen. Este modelo incluye las variables siguientes : Pib, consumo, importaciones, exportationes, inversiones. Para los años estudiados, los resultados de este modelo son bastante cercanos unos de otros, para ciertos horizontes, de aquellos efectuados por los organismos de previsión. [ger] Die Verwendung der VAR-Modelle zu Prognosezwecken, . von Catherine Doz, Pierre Malgrange.. . In diesem Artikel soil die Eignung eines als einfacher "schwarzer Kasten" verwandten VAR-Modells zu Prognosezwecken bewertet werden. Die Schätzungsergebnisse führen zu einem VAR-Modell mit Kointegrationsrelationen, das mit Hilfe der Johansen-Methode bewertet wird. Das Modell umfaßt folgende Variablen: BIP, Konsum, Ein- und Ausfuhren sowie die Investitionstätigkeit. Für die untersuchten Jahre entspricht die Leistungsfähigkeit dieses Modells bei bestimmten Zeithorizonten weitgehend der Zuverlässigkeit der von den Prognoseinstituten gemachten Vorhersagen. [eng] Using VAR Models for Forecasting, . by Catherine Doz and Pierre Malgrange.. . The goal of this article is to evaluate the forecasting ability of a VAR model used as a simple "black box". The products of the estimations result in the selection of a VAR model with cointegration relations, as estimated by the Johansen method. It includes the following variables: GDP, consumption, imports, exports and investment. For the years studied and for certain outlooks, the performances of this model are fairly similar to those carried out by forecasting bodies.

Suggested Citation

  • Catherine Doz & Pierre Malgrange, 1992. "Modèles VAR et prévisions à court terme," Économie et Prévision, Programme National Persée, vol. 106(5), pages 109-122.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_1992_num_106_5_5319
    DOI: 10.3406/ecop.1992.5319
    Note: DOI:10.3406/ecop.1992.5319
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.1992.5319
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_1992_num_106_5_5319
    Download Restriction: no

    File URL: https://libkey.io/10.3406/ecop.1992.5319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter C.B. Phillips & Peter Schmidt, 1989. "Testing for a Unit Root in the Presence of Deterministic Trends," Cowles Foundation Discussion Papers 933, Cowles Foundation for Research in Economics, Yale University.
    2. Johansen, Soren & Juselius, Katarina, 1990. "Maximum Likelihood Estimation and Inference on Cointegration--With Applications to the Demand for Money," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 52(2), pages 169-210, May.
    3. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    4. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    5. McNees, Stephen K, 1986. "Forecasting Accuracy of Alternative Techniques: A Comparison of U.S. Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 5-15, January.
    6. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    7. Cooley, Thomas F. & Leroy, Stephen F., 1985. "Atheoretical macroeconometrics: A critique," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 283-308, November.
    8. Søren Johansen & Katarina Juselius, 1988. "Hypothesis Testing for Cointegration Vectors: with Application to the Demand for Money in Denmark and Finland," Discussion Papers 88-05, University of Copenhagen. Department of Economics.
    9. Didier Borowski & Carine Bouthevillain & Catherine Doz & Pierre Malgrange & Pierre Morin, 1991. "Vingt ans de prévisions macro-économiques : une évaluation sur données françaises," Économie et Prévision, Programme National Persée, vol. 99(3), pages 43-65.
    10. Katarina Juselius, 1990. "Long-run Relations in a Well Defined Statistical Model for the Data Generating Process. Cointegration Analysis of the PPP and the UIP Relations," Discussion Papers 90-11, University of Copenhagen. Department of Economics.
    11. Engle, R.F. & Yoo, B.S., 1989. "Cointegrated Economic Time Series: A Survey With New Results," Papers 8-89-13, Pennsylvania State - Department of Economics.
    12. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    13. Wallis, Kenneth F, 1989. "Macroeconomic Forecasting: A Survey," Economic Journal, Royal Economic Society, vol. 99(394), pages 28-61, March.
    14. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    15. LeSage, James P, 1990. "A Comparison of the Forecasting Ability of ECM and VAR Models," The Review of Economics and Statistics, MIT Press, vol. 72(4), pages 664-671, November.
    16. Gregoir, Stéphane & Laroque, Guy, 1993. "Multivariate Time Series: A Polynomial Error Correction Representation Theorem," Econometric Theory, Cambridge University Press, vol. 9(3), pages 329-342, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    2. Alexandre Mathis & Andrew Brociner, 1994. "Retour vers le futur. Une analyse rétrospective des prévisions de MOSAÏQUE," Revue de l'OFCE, Programme National Persée, vol. 49(1), pages 207-228.
    3. Karine Bouthevillain & Alexandre Mathis, 1995. "Prévisions : mesures, erreurs et principaux résultats," Économie et Statistique, Programme National Persée, vol. 285(1), pages 89-100.
    4. Karine Bouthevillain, 1993. "La prévision macro-économique : précision relative et consensus," Économie et Prévision, Programme National Persée, vol. 108(2), pages 97-126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Jacobs & Albert van der Horst,, 1996. "VAR-ing the economy of the Netherlands," Working Papers 24, Centre for Economic Research, University of Groningen and University of Twente.
    2. Norah Al-Ballaa, 2005. "Test for cointegration based on two-stage least squares," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 707-713.
    3. Bardsen, Gunnar & Eitrheim, Oyvind & Jansen, Eilev S. & Nymoen, Ragnar, 2005. "The Econometrics of Macroeconomic Modelling," OUP Catalogue, Oxford University Press, number 9780199246502.
    4. Ericsson, Neil R., 1992. "Cointegration, exogeneity, and policy analysis: An overview," Journal of Policy Modeling, Elsevier, vol. 14(3), pages 251-280, June.
    5. Bierens, Herman J., 1997. "Nonparametric cointegration analysis," Journal of Econometrics, Elsevier, vol. 77(2), pages 379-404, April.
    6. Bosupeng, Mpho, 2016. "The Effects of Chinese Interest Rates and Inflation: A Decomposition of The Fisher Effect," MPRA Paper 78160, University Library of Munich, Germany, revised 2016.
    7. Baker, Mindy Lyn, 2009. "Three essays concerning agriculture and energy," ISU General Staff Papers 200901010800001849, Iowa State University, Department of Economics.
    8. Norman J. Morin, 2006. "Likelihood ratio tests on cointegrating vectors, disequilibrium adjustment vectors, and their orthogonal complements," Finance and Economics Discussion Series 2006-21, Board of Governors of the Federal Reserve System (U.S.).
    9. Michael S. Haigh & Nikos K. Nomikos & David A. Bessler, 2004. "Integration and Causality in International Freight Markets: Modeling with Error Correction and Directed Acyclic Graphs," Southern Economic Journal, John Wiley & Sons, vol. 71(1), pages 145-162, July.
    10. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    11. Charles G. Renfro, 2009. "The Practice of Econometric Theory," Advanced Studies in Theoretical and Applied Econometrics, Springer, number 978-3-540-75571-5.
    12. Bierens, H.J., 1995. "Nonparametric cointegration analysis," Other publications TiSEM aa45c4fa-ef46-43a6-b14e-b, Tilburg University, School of Economics and Management.
    13. Lütkepohl, Helmut, 1999. "Vector autoregressive analysis," SFB 373 Discussion Papers 1999,31, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Shoesmith, Gary L., 1995. "Multiple cointegrating vectors, error correction, and forecasting with Litterman's model," International Journal of Forecasting, Elsevier, vol. 11(4), pages 557-567, December.
    15. Lütkepohl, Helmut, 1999. "Vector autoregressions," SFB 373 Discussion Papers 1999,4, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. Bosupeng, Mpho, 2015. "The Impossible Trinity and Financial Markets – An Examination of Inflation Volatility Spillovers," MPRA Paper 77923, University Library of Munich, Germany, revised 2015.
    17. Chen, Gong-meng & Firth, Michael & Meng Rui, Oliver, 2002. "Stock market linkages: Evidence from Latin America," Journal of Banking & Finance, Elsevier, vol. 26(6), pages 1113-1141, June.
    18. Boswijk, H. Peter, 1995. "Efficient inference on cointegration parameters in structural error correction models," Journal of Econometrics, Elsevier, vol. 69(1), pages 133-158, September.
    19. Kenneth F. Wallis & Jan P. A. M. Jacobs, 2005. "Comparing SVARs and SEMs: two models of the UK economy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 209-228.
    20. Michael S. Haigh & David A. Bessler, 2004. "Causality and Price Discovery: An Application of Directed Acyclic Graphs," The Journal of Business, University of Chicago Press, vol. 77(4), pages 1099-1121, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_1992_num_106_5_5319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/ecop .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.