Author
Listed:
- Tiffany Benzine
- Ryan Brandt
- William C Lovell
- Daisuke Yamane
- Petra Neddermann
- Raffaele De Francesco
- Stanley M Lemon
- Alan S Perelson
- Ruian Ke
- David R McGivern
Abstract
Hepatitis C virus (HCV) RNA is synthesized by the replicase complex (RC), a macromolecular assembly composed of viral non-structural proteins and cellular co-factors. Inhibitors of the HCV NS5A protein block formation of new RCs but do not affect RNA synthesis by pre-formed RCs. Without new RC formation, existing RCs turn over and are eventually lost from the cell. We aimed to use NS5A inhibitors to estimate the half-life of the functional RC of HCV. We compared different cell culture-infectious strains of HCV that may be grouped based on their sensitivity to lipid peroxidation: robustly replicating, lipid peroxidation resistant (LPOR) viruses (e.g. JFH-1 or H77D) and more slowly replicating, lipid peroxidation sensitive (LPOS) viruses (e.g. H77S.3 and N.2). In luciferase assays, LPOS HCV strains declined under NS5A inhibitor therapy with much slower kinetics compared to LPOR HCV strains. This difference in rate of decline was not observed for inhibitors of the NS5B RNA-dependent RNA polymerase suggesting that the difference was not simply a consequence of differences in RNA stability. In further analyses, we compared two isoclonal HCV variants: the LPOS H77S.3 and the LPOR H77D that differ only by 12 amino acids. Differences in rate of decline between H77S.3 and H77D following NS5A inhibitor addition were not due to amino acid sequences in NS5A but rather due to a combination of amino acid differences in the non-structural proteins that make up the HCV RC. Mathematical modeling of intracellular HCV RNA dynamics suggested that differences in RC stability (half-lives of 3.5 and 9.9 hours, for H77D and H77S.3, respectively) are responsible for the different kinetics of antiviral suppression between LPOS and LPOR viruses. In nascent RNA capture assays, the rate of RNA synthesis decline following NS5A inhibitor addition was significantly faster for H77D compared to H77S.3 indicating different half-lives of functional RCs.Author summary: Inhibitors targeting the HCV NS5A protein are a key component of highly effective interferon-free combination therapies for chronic hepatitis C. Despite their high potency against HCV, the precise details of their mode of action are poorly understood. They are known to block assembly and release of virus particles from infected hepatocytes, resulting in a rapid drop in viral RNA in the blood. Additionally they block formation of intracellular membrane structures that are the site of viral RNA synthesis in infected hepatocytes. By preventing membrane remodeling, NS5A inhibitors effectively block formation of new RCs within the cell. Following addition of NS5A inhibitors to infected cell cultures, the kinetics of antiviral suppression were found to vary between different HCV strains, independent of specific differences in NS5A sequence. Using an integrated experimental and mathematical modeling approach, we provide evidence that the rate of decline of viral RNA abundance in infected cells treated with NS5A inhibitors is determined by the stability or half-life of the functional HCV RC.
Suggested Citation
Tiffany Benzine & Ryan Brandt & William C Lovell & Daisuke Yamane & Petra Neddermann & Raffaele De Francesco & Stanley M Lemon & Alan S Perelson & Ruian Ke & David R McGivern, 2017.
"NS5A inhibitors unmask differences in functional replicase complex half-life between different hepatitis C virus strains,"
PLOS Pathogens, Public Library of Science, vol. 13(6), pages 1-20, June.
Handle:
RePEc:plo:ppat00:1006343
DOI: 10.1371/journal.ppat.1006343
Download full text from publisher
References listed on IDEAS
- Min Gao & Richard E. Nettles & Makonen Belema & Lawrence B. Snyder & Van N. Nguyen & Robert A. Fridell & Michael H. Serrano-Wu & David R. Langley & Jin-Hua Sun & Donald R. O’Boyle II & Julie A. Lemm &, 2010.
"Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect,"
Nature, Nature, vol. 465(7294), pages 96-100, May.
- Mohsan Saeed & Ursula Andreo & Hyo-Young Chung & Christine Espiritu & Andrea D. Branch & Jose M. Silva & Charles M. Rice, 2015.
"SEC14L2 enables pan-genotype HCV replication in cell culture,"
Nature, Nature, vol. 524(7566), pages 471-475, August.
Full references (including those not matched with items on IDEAS)
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Libin Rong & Jeremie Guedj & Harel Dahari & Daniel J Coffield Jr & Micha Levi & Patrick Smith & Alan S Perelson, 2013.
"Analysis of Hepatitis C Virus Decline during Treatment with the Protease Inhibitor Danoprevir Using a Multiscale Model,"
PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
- Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024.
"Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation,"
Nature Communications, Nature, vol. 15(1), pages 1-20, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1006343. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.