IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0265238.html
   My bibliography  Save this article

Mixed convective flow of a magnetohydrodynamic Casson fluid through a permeable stretching sheet with first-order chemical reaction

Author

Listed:
  • Anwar Saeed
  • Ebrahem A Algehyne
  • Musaad S Aldhabani
  • Abdullah Dawar
  • Poom Kumam
  • Wiyada Kumam

Abstract

This research article presents the magnetohydrodynamic Casson fluid flow through an extending surface embedded in a porous medium. Furthermore, the Casson fluid flow is investigated under the effects of thermal radiation, Joule heating, viscous dissipation, and chemical reaction. The analytical solution of the modeled problem is utilized with the help of homotopy analysis method (HAM). The convergence region of the applied technique is portrayed graphically. The impacts of the embedded factors on the flow profiles are exhibited with the help of figures. Furthermore, numerical values of the surface drag force, heat, and mass transfer rates are highlighted via table. The results show that the augmented Darcy number, Casson and magnetic parameters have declined the velocity profile of the Casson fluid flow. Growth in Brownian motion augments the chaotic motion amongst the particles due to which the kinetic energy of the particles transforms to heat energy which consequently augmented the thermal profile, while reduced the concentration profile. The mass and energy profiles are positively effects with the increment of thermophoresis term. And the growing values of chemical reaction and Lewis number cause a reduction in the diffusivity of mass of fluid due to which less transfer of mass takes place that weakens the concentration layer thickness and declines the concentration profiles.

Suggested Citation

  • Anwar Saeed & Ebrahem A Algehyne & Musaad S Aldhabani & Abdullah Dawar & Poom Kumam & Wiyada Kumam, 2022. "Mixed convective flow of a magnetohydrodynamic Casson fluid through a permeable stretching sheet with first-order chemical reaction," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-15, April.
  • Handle: RePEc:plo:pone00:0265238
    DOI: 10.1371/journal.pone.0265238
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265238
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0265238&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0265238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mittal, Akhil S. & Patel, Harshad R., 2020. "Influence of thermophoresis and Brownian motion on mixed convection two dimensional MHD Casson fluid flow with non-linear radiation and heat generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    2. Arshad Khan & Wiyada Kumam & Imran Khan & Anwar Saeed & Taza Gul & Poom Kumam & Ishtiaq Ali, 2021. "Chemically reactive nanofluid flow past a thin moving needle with viscous dissipation, magnetic effects and hall current," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-18, April.
    3. Mahdi Ramezanizadeh & Mohammad Alhuyi Nazari, 2019. "Modeling thermal conductivity of Ag/water nanofluid by applying a mathematical correlation and artificial neural network," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 14(4), pages 468-474.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sushila Choudhary & Prasun Choudhary & Nazek Alessa & Karuppusamy Loganathan, 2023. "MHD Thermal and Solutal Stratified Stagnation Flow of Tangent Hyperbolic Fluid Induced by Stretching Cylinder with Dual Convection," Mathematics, MDPI, vol. 11(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, M. Ijaz & Qayyum, Sumaira & Farooq, Shahid & Chu, Yu-Ming & Kadry, Seifedine, 2021. "Modeling and simulation of micro-rotation and spin gradient viscosity for ferromagnetic hybrid (Manganese Zinc Ferrite, Nickle Zinc Ferrite) nanofluids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 497-509.
    2. Ali Komeili Birjandi & Morteza Fahim Alavi & Mohamed Salem & Mamdouh El Haj Assad & Natarajan Prabaharan, 2022. "Modeling carbon dioxide emission of countries in southeast of Asia by applying artificial neural network [Energy and exergy analyses of single flash geothermal power plant at optimum separator temp," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 321-326.
    3. Safyan Mukhtar & Taza Gul, 2023. "Solar Radiation and Thermal Convection of Hybrid Nanofluids for the Optimization of Solar Collector," Mathematics, MDPI, vol. 11(5), pages 1-13, February.
    4. Sahoo, A. & Nandkeolyar, R., 2021. "Entropy generation in convective radiative flow of a Casson nanofluid in non-Darcy porous medium with Hall current and activation energy: The multiple regression model," Applied Mathematics and Computation, Elsevier, vol. 402(C).
    5. Song, Ying-Qing & Hamid, Aamir & Khan, M. Ijaz & Gowda, R.J. Punith & Kumar, R. Naveen & Prasannakumara, B.C. & Khan, Sami Ullah & Khan, M. Imran & Malik, M.Y., 2021. "Solar energy aspects of gyrotactic mixed bioconvection flow of nanofluid past a vertical thin moving needle influenced by variable Prandtl number," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Salahuddin, T. & Siddique, Nazim & Arshad, Maryam, 2020. "Insight into the dynamics of the Non-Newtonian Casson fluid on a horizontal object with variable thickness," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 211-231.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0265238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.