IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0263051.html
   My bibliography  Save this article

Evaluation of soccer team defense based on prediction models of ball recovery and being attacked: A pilot study

Author

Listed:
  • Kosuke Toda
  • Masakiyo Teranishi
  • Keisuke Kushiro
  • Keisuke Fujii

Abstract

With the development of measurement technology, data on the movements of actual games in various sports can be obtained and used for planning and evaluating the tactics and strategy. Defense in team sports is generally difficult to be evaluated because of the lack of statistical data. Conventional evaluation methods based on predictions of scores are considered unreliable because they predict rare events throughout the game. Besides, it is difficult to evaluate various plays leading up to a score. In this study, we propose a method to evaluate team defense from a comprehensive perspective related to team performance by predicting ball recovery and being attacked, which occur more frequently than goals, using player actions and positional data of all players and the ball. Using data from 45 soccer matches, we examined the relationship between the proposed index and team performance in actual matches and throughout a season. Results show that the proposed classifiers predicted the true events (mean F1 score > 0.483) better than the existing classifiers which were based on rare events or goals (mean F1 score

Suggested Citation

  • Kosuke Toda & Masakiyo Teranishi & Keisuke Kushiro & Keisuke Fujii, 2022. "Evaluation of soccer team defense based on prediction models of ball recovery and being attacked: A pilot study," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
  • Handle: RePEc:plo:pone00:0263051
    DOI: 10.1371/journal.pone.0263051
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263051
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0263051&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0263051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Akifumi Kijima & Keiko Yokoyama & Hiroyuki Shima & Yuji Yamamoto, 2014. "Emergence of self-similarity in football dynamics," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(2), pages 1-6, February.
    2. Ian G. McHale & Philip A. Scarf & David E. Folker, 2012. "On the Development of a Soccer Player Performance Rating System for the English Premier League," Interfaces, INFORMS, vol. 42(4), pages 339-351, August.
    3. Ian McHale & Phil Scarf, 2007. "Modelling soccer matches using bivariate discrete distributions with general dependence structure," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 432-445, November.
    4. Mikael Jamil & Hongyou Liu & Ashwin Phatak & Daniel Memmert, 2021. "An investigation identifying which key performance indicators influence the chances of promotion to the elite leagues in professional European football," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 21(4), pages 641-650, July.
    5. Keiko Yokoyama & Yuji Yamamoto, 2011. "Three People Can Synchronize as Coupled Oscillators during Sports Activities," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-8, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurizio Carpita & Paola Pasca & Serena Arima & Enrico Ciavolino, 2023. "Clustering of variables methods and measurement models for soccer players’ performances," Annals of Operations Research, Springer, vol. 325(1), pages 37-56, June.
    2. Scarf, Philip & Yusof, Muhammad Mat & Bilbao, Mark, 2009. "A numerical study of designs for sporting contests," European Journal of Operational Research, Elsevier, vol. 198(1), pages 190-198, October.
    3. Babatunde Buraimo & David Forrest & Ian G. McHale & J.D. Tena, 2020. "Armchair Fans: New Insights Into The Demand For Televised Soccer," Working Papers 202020, University of Liverpool, Department of Economics.
    4. Ian G. McHale & Philip A. Scarf & David E. Folker, 2012. "On the Development of a Soccer Player Performance Rating System for the English Premier League," Interfaces, INFORMS, vol. 42(4), pages 339-351, August.
    5. Jacek Osiewalski & Jerzy Marzec, 2019. "Joint modelling of two count variables when one of them can be degenerate," Computational Statistics, Springer, vol. 34(1), pages 153-171, March.
    6. Buraimo, Babatunde & Forrest, David & McHale, Ian G. & Tena, J.D., 2022. "Armchair fans: Modelling audience size for televised football matches," European Journal of Operational Research, Elsevier, vol. 298(2), pages 644-655.
    7. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    8. Oberstone Joel, 2010. "Comparing English Premier League Goalkeepers: Identifying the Pitch Actions that Differentiate the Best from the Rest," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(1), pages 1-19, January.
    9. Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
    10. Scarf, Phil & Parma, Rishikesh & McHale, Ian, 2019. "On outcome uncertainty and scoring rates in sport: The case of international rugby union," European Journal of Operational Research, Elsevier, vol. 273(2), pages 721-730.
    11. Hendrik van der Wurp & Andreas Groll, 2023. "Introducing LASSO-type penalisation to generalised joint regression modelling for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 127-151, March.
    12. Marcelino, Rui & Sampaio, Jaime & Amichay, Guy & Gonçalves, Bruno & Couzin, Iain D. & Nagy, Máté, 2020. "Collective movement analysis reveals coordination tactics of team players in football matches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. So, Sunha & Lee, Dong-Hee & Jung, Byoung Cheol, 2011. "An alternative bivariate zero-inflated negative binomial regression model using a copula," Economics Letters, Elsevier, vol. 113(2), pages 183-185.
    14. Gavin A. Whitaker & Ricardo Silva & Daniel Edwards & Ioannis Kosmidis, 2021. "A Bayesian approach for determining player abilities in football," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 174-201, January.
    15. Yuvraj Sunecher & Naushad Mamode Khan & Vandna Jowaheer & Marcelo Bourguignon & Mohammad Arashi, 2019. "A Primer on a Flexible Bivariate Time Series Model for Analyzing First and Second Half Football Goal Scores: The Case of the Big 3 London Rivals in the EPL," Annals of Data Science, Springer, vol. 6(3), pages 531-548, September.
    16. Łukasz Szczepański & Ian McHale, 2016. "Beyond completion rate: evaluating the passing ability of footballers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 513-533, February.
    17. Pierpaolo D’Urso & Livia Giovanni & Vincenzina Vitale, 2023. "A robust method for clustering football players with mixed attributes," Annals of Operations Research, Springer, vol. 325(1), pages 9-36, June.
    18. Sam McIntosh & Stephanie Kovalchik & Sam Robertson, 2019. "Comparing subjective and objective evaluations of player performance in Australian Rules football," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-16, August.
    19. Oberstone Joel, 2009. "Differentiating the Top English Premier League Football Clubs from the Rest of the Pack: Identifying the Keys to Success," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(3), pages 1-29, July.
    20. Cunniffe Nik J & Cook Alex R, 2009. "Cruel and Unusual Punishment? An Analysis of Point Deduction in European Association Football Leagues," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(4), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.