IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0262139.html
   My bibliography  Save this article

A global meta-analysis of animal manure application and soil microbial ecology based on random control treatments

Author

Listed:
  • Zhenhua Guo
  • Lei Lv
  • Di Liu
  • Xinmiao He
  • Wentao Wang
  • Yanzhong Feng
  • Md Saiful Islam
  • Qiuju Wang
  • Wengui Chen
  • Ziguang Liu
  • Saihui Wu
  • Adam Abied

Abstract

The processes involved in soil domestication have altered the soil microbial ecology. We examined the question of whether animal manure application affects the soil microbial ecology of farmlands. The effects of global animal manure application on soil microorganisms were subjected to a meta-analysis based on randomized controlled treatments. A total of 2303 studies conducted in the last 30 years were incorporated into the analysis, and an additional 45 soil samples were collected and sequenced to obtain 16S rRNA and 18S rRNA data. The results revealed that manure application increased soil microbial biomass. Manure application alone increased bacterial diversity (M-Z: 7.546 and M-I: 8.68) and inhibited and reduced fungal diversity (M-Z: −1.15 and M-I: −1.03). Inorganic fertilizer replaced cattle and swine manure and provided nutrients to soil microorganisms. The soil samples of the experimental base were analyzed, and the relative abundances of bacteria and fungi were altered compared with no manure application. Manure increased bacterial diversity and reduced fungal diversity. Mrakia frigida and Betaproteobacteriales, which inhibit other microorganisms, increased significantly in the domesticated soil. Moreover, farm sewage treatments resulted in a bottleneck in the manure recovery rate that should be the focus of future research. Our results suggest that the potential risks of restructuring the microbial ecology of cultivated land must be considered.

Suggested Citation

  • Zhenhua Guo & Lei Lv & Di Liu & Xinmiao He & Wentao Wang & Yanzhong Feng & Md Saiful Islam & Qiuju Wang & Wengui Chen & Ziguang Liu & Saihui Wu & Adam Abied, 2022. "A global meta-analysis of animal manure application and soil microbial ecology based on random control treatments," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
  • Handle: RePEc:plo:pone00:0262139
    DOI: 10.1371/journal.pone.0262139
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262139
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0262139&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0262139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simone Fatichi & Dani Or & Robert Walko & Harry Vereecken & Michael H. Young & Teamrat A. Ghezzehei & Tomislav Hengl & Stefan Kollet & Nurit Agam & Roni Avissar, 2020. "Soil structure is an important omission in Earth System Models," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Eveline Pinseel & Steven B. Janssens & Elie Verleyen & Pieter Vanormelingen & Tyler J. Kohler & Elisabeth M. Biersma & Koen Sabbe & Bart Vijver & Wim Vyverman, 2020. "Global radiation in a rare biosphere soil diatom," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Carlos Molina-Santiago & John R. Pearson & Yurena Navarro & María Victoria Berlanga-Clavero & Andrés Mauricio Caraballo-Rodriguez & Daniel Petras & María Luisa García-Martín & Gaelle Lamon & Birgit Ha, 2019. "The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    4. Samuel Bickel & Dani Or, 2020. "Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Piciullo & Vittoria Capobianco & Håkon Heyerdahl, 2022. "A first step towards a IoT-based local early warning system for an unsaturated slope in Norway," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3377-3407, December.
    2. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    3. Maxime Batsch & Isaline Guex & Helena Todorov & Clara M. Heiman & Jordan Vacheron & Julia A. Vorholt & Christoph Keel & Jan Roelof van der Meer, 2024. "Fragmented micro-growth habitats present opportunities for alternative competitive outcomes," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Senka Čaušević & Manupriyam Dubey & Marian Morales & Guillem Salazar & Vladimir Sentchilo & Nicolas Carraro & Hans-Joachim Ruscheweyh & Shinichi Sunagawa & Jan Roelof van der Meer, 2024. "Niche availability and competitive loss by facilitation control proliferation of bacterial strains intended for soil microbiome interventions," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    5. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Jarvis, Nicholas & Larsbo, Mats & Lewan, Elisabet & Garré, Sarah, 2022. "Improved descriptions of soil hydrology in crop models: The elephant in the room?," Agricultural Systems, Elsevier, vol. 202(C).
    7. Ioanna S. Panagea & Antonio Berti & Pavel Čermak & Jan Diels & Annemie Elsen & Helena Kusá & Ilaria Piccoli & Jean Poesen & Chris Stoate & Mia Tits & Zoltan Toth & Guido Wyseure, 2021. "Soil Water Retention as Affected by Management Induced Changes of Soil Organic Carbon: Analysis of Long-Term Experiments in Europe," Land, MDPI, vol. 10(12), pages 1-15, December.
    8. Alon Nissan & Uria Alcolombri & Nadav Peleg & Nir Galili & Joaquin Jimenez-Martinez & Peter Molnar & Markus Holzner, 2023. "Global warming accelerates soil heterotrophic respiration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Dennis Metze & Jörg Schnecker & Alberto Canarini & Lucia Fuchslueger & Benjamin J. Koch & Bram W. Stone & Bruce A. Hungate & Bela Hausmann & Hannes Schmidt & Andreas Schaumberger & Michael Bahn & Chri, 2023. "Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Chengyu Xu & Yulin Li & Xue Hu & Qian Zang & Hengyang Zhuang & Lifen Huang, 2022. "The Influence of Organic and Conventional Cultivation Patterns on Physicochemical Property, Enzyme Activity and Microbial Community Characteristics of Paddy Soil," Agriculture, MDPI, vol. 12(1), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0262139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.