IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0260432.html
   My bibliography  Save this article

A network-based method for predicting disease-associated enhancers

Author

Listed:
  • Duc-Hau Le

Abstract

Background: Enhancers regulate transcription of target genes, causing a change in expression level. Thus, the aberrant activity of enhancers can lead to diseases. To date, a large number of enhancers have been identified, yet a small portion of them have been found to be associated with diseases. This raises a pressing need to develop computational methods to predict associations between diseases and enhancers. Results: In this study, we assumed that enhancers sharing target genes could be associated with similar diseases to predict the association. Thus, we built an enhancer functional interaction network by connecting enhancers significantly sharing target genes, then developed a network diffusion method RWDisEnh, based on a random walk with restart algorithm, on networks of diseases and enhancers to globally measure the degree of the association between diseases and enhancers. RWDisEnh performed best when the disease similarities are integrated with the enhancer functional interaction network by known disease-enhancer associations in the form of a heterogeneous network of diseases and enhancers. It was also superior to another network diffusion method, i.e., PageRank with Priors, and a neighborhood-based one, i.e., MaxLink, which simply chooses the closest neighbors of known disease-associated enhancers. Finally, we showed that RWDisEnh could predict novel enhancers, which are either directly or indirectly associated with diseases. Conclusions: Taken together, RWDisEnh could be a potential method for predicting disease-enhancer associations.

Suggested Citation

  • Duc-Hau Le, 2021. "A network-based method for predicting disease-associated enhancers," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0260432
    DOI: 10.1371/journal.pone.0260432
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260432
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0260432&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0260432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yukinori Okada & Di Wu & Gosia Trynka & Towfique Raj & Chikashi Terao & Katsunori Ikari & Yuta Kochi & Koichiro Ohmura & Akari Suzuki & Shinji Yoshida & Robert R. Graham & Arun Manoharan & Ward Ortman, 2014. "Genetics of rheumatoid arthritis contributes to biology and drug discovery," Nature, Nature, vol. 506(7488), pages 376-381, February.
    2. Minako Imamura & Atsushi Takahashi & Toshimasa Yamauchi & Kazuo Hara & Kazuki Yasuda & Niels Grarup & Wei Zhao & Xu Wang & Alicia Huerta-Chagoya & Cheng Hu & Sanghoon Moon & Jirong Long & Soo Heon Kwa, 2016. "Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes," Nature Communications, Nature, vol. 7(1), pages 1-12, April.
    3. Robin Andersson & Claudia Gebhard & Irene Miguel-Escalada & Ilka Hoof & Jette Bornholdt & Mette Boyd & Yun Chen & Xiaobei Zhao & Christian Schmidl & Takahiro Suzuki & Evgenia Ntini & Erik Arner & Eivi, 2014. "An atlas of active enhancers across human cell types and tissues," Nature, Nature, vol. 507(7493), pages 455-461, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietro Demela & Nicola Pirastu & Blagoje Soskic, 2023. "Cross-disorder genetic analysis of immune diseases reveals distinct gene associations that converge on common pathways," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Bingnan Li & Patrice Zeis & Yujie Zhang & Alisa Alekseenko & Eliska Fürst & Yerma Pareja Sanchez & Gen Lin & Manu M. Tekkedil & Ilaria Piazza & Lars M. Steinmetz & Vicent Pelechano, 2023. "Differential regulation of mRNA stability modulates transcriptional memory and facilitates environmental adaptation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Mary-Ellen Lynall & Blagoje Soskic & James Hayhurst & Jeremy Schwartzentruber & Daniel F. Levey & Gita A. Pathak & Renato Polimanti & Joel Gelernter & Murray B. Stein & Gosia Trynka & Menna R. Clatwor, 2022. "Genetic variants associated with psychiatric disorders are enriched at epigenetically active sites in lymphoid cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Chirag Nepal & Jesper B. Andersen, 2023. "Alternative promoters in CpG depleted regions are prevalently associated with epigenetic misregulation of liver cancer transcriptomes," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Roy Oelen & Dylan H. Vries & Harm Brugge & M. Grace Gordon & Martijn Vochteloo & Chun J. Ye & Harm-Jan Westra & Lude Franke & Monique G. P. Wijst, 2022. "Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Feng Jiang & Shou-Ye Hu & Wen Tian & Nai-Ning Wang & Ning Yang & Shan-Shan Dong & Hui-Miao Song & Da-Jin Zhang & Hui-Wu Gao & Chen Wang & Hao Wu & Chang-Yi He & Dong-Li Zhu & Xiao-Feng Chen & Yan Guo , 2024. "A landscape of gene expression regulation for synovium in arthritis," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Milton Pividori & Sumei Lu & Binglan Li & Chun Su & Matthew E. Johnson & Wei-Qi Wei & Qiping Feng & Bahram Namjou & Krzysztof Kiryluk & Iftikhar J. Kullo & Yuan Luo & Blair D. Sullivan & Benjamin F. V, 2023. "Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    8. María Gordillo-Marañón & Magdalena Zwierzyna & Pimphen Charoen & Fotios Drenos & Sandesh Chopade & Tina Shah & Jorgen Engmann & Nishi Chaturvedi & Olia Papacosta & Goya Wannamethee & Andrew Wong & Ree, 2021. "Validation of lipid-related therapeutic targets for coronary heart disease prevention using human genetics," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Andrew A. Brown & Juan J. Fernandez-Tajes & Mun-gwan Hong & Caroline A. Brorsson & Robert W. Koivula & David Davtian & Théo Dupuis & Ambra Sartori & Theodora-Dafni Michalettou & Ian M. Forgie & Jonath, 2023. "Genetic analysis of blood molecular phenotypes reveals common properties in the regulatory networks affecting complex traits," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Charley Xia & Sarah J. Pickett & David C. M. Liewald & Alexander Weiss & Gavin Hudson & W. David Hill, 2023. "The contributions of mitochondrial and nuclear mitochondrial genetic variation to neuroticism," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Maik Pietzner & Eleanor Wheeler & Julia Carrasco-Zanini & Nicola D. Kerrison & Erin Oerton & Mine Koprulu & Jian’an Luan & Aroon D. Hingorani & Steve A. Williams & Nicholas J. Wareham & Claudia Langen, 2021. "Synergistic insights into human health from aptamer- and antibody-based proteomic profiling," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Feng Bai & Peng Shu & Heng Deng & Yi Wu & Yao Chen & Mengbo Wu & Tao Ma & Yang Zhang & Julien Pirrello & Zhengguo Li & Yiguo Hong & Mondher Bouzayen & Mingchun Liu, 2024. "A distal enhancer guides the negative selection of toxic glycoalkaloids during tomato domestication," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Yuanyuan Luan & Yan Fang & Lin Jiang & Yuehui Ma & Shangjie Wu & Junwen Zhou & Yabin Pu & Qianjun Zhao & Xiaohong He, 2022. "Landscape of Global Gene Expression Reveals Distinctive Tissue Characteristics in Bactrian Camels ( Camelus bactrianus )," Agriculture, MDPI, vol. 12(7), pages 1-15, July.
    14. Kota Hamamoto & Yusuke Umemura & Shiho Makino & Takashi Fukaya, 2023. "Dynamic interplay between non-coding enhancer transcription and gene activity in development," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Parker C. Wilson & Yoshiharu Muto & Haojia Wu & Anil Karihaloo & Sushrut S. Waikar & Benjamin D. Humphreys, 2022. "Multimodal single cell sequencing implicates chromatin accessibility and genetic background in diabetic kidney disease progression," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    16. Zhishan Chen & Xingyi Guo & Ran Tao & Jeroen R. Huyghe & Philip J. Law & Ceres Fernandez-Rozadilla & Jie Ping & Guochong Jia & Jirong Long & Chao Li & Quanhu Shen & Yuhan Xie & Maria N. Timofeeva & Mi, 2024. "Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Xavier Contreras & David Depierre & Charbel Akkawi & Marina Srbic & Marion Helsmoortel & Maguelone Nogaret & Matthieu LeHars & Kader Salifou & Alexandre Heurteau & Olivier Cuvier & Rosemary Kiernan, 2023. "PAPγ associates with PAXT nuclear exosome to control the abundance of PROMPT ncRNAs," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Kaitlyn A. Lagattuta & Hannah L. Park & Laurie Rumker & Kazuyoshi Ishigaki & Aparna Nathan & Soumya Raychaudhuri, 2024. "The genetic basis of autoimmunity seen through the lens of T cell functional traits," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    19. Takayoshi Matsumura & Haruhito Totani & Yoshitaka Gunji & Masahiro Fukuda & Rui Yokomori & Jianwen Deng & Malini Rethnam & Chong Yang & Tze King Tan & Tadayoshi Karasawa & Kazuomi Kario & Masafumi Tak, 2022. "A Myb enhancer-guided analysis of basophil and mast cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Charles Limouse & Owen K. Smith & David Jukam & Kelsey A. Fryer & William J. Greenleaf & Aaron F. Straight, 2023. "Global mapping of RNA-chromatin contacts reveals a proximity-dominated connectivity model for ncRNA-gene interactions," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0260432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.