IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0259793.html
   My bibliography  Save this article

Resident travel mode prediction model in Beijing metropolitan area

Author

Listed:
  • Xueyu Mi
  • Shengyou Wang
  • Chunfu Shao
  • Peng Zhang
  • Mingming Chen

Abstract

With the development of economic integration, Beijing has become more closely connected with surrounding areas, which gradually formed the Beijing metropolitan area (BMA). The authors define the scope of BMA from two dimensions of space and time. BMA is determined to be the built-up area of Beijing and its surrounding 10 districts. Designed questionnaire survey the personal characteristics, family characteristics, and travel characteristics of residents from 10 districts in the surrounding BMA. The statistical analysis of questionnaires shows that the supply of public transportation is insufficient and cannot meet traffic demand. Further, the travel mode prediction model of Softmax regression machine learning algorithm for BMA (SRBM) is established. To further verify the prediction performance of the proposed model, the Multinomial Logit Model (MNL) and Support Vector Machine (SVM), model are introduced to compare the prediction accuracy. The results show that the constructed SRBM model exhibits high prediction accuracy, with an average accuracy of 88.35%, which is 2.83% and 18.11% higher than the SVM and MNL models, respectively. This article provides new ideas for the prediction of travel modes in the Beijing metropolitan area.

Suggested Citation

  • Xueyu Mi & Shengyou Wang & Chunfu Shao & Peng Zhang & Mingming Chen, 2021. "Resident travel mode prediction model in Beijing metropolitan area," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-22, November.
  • Handle: RePEc:plo:pone00:0259793
    DOI: 10.1371/journal.pone.0259793
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0259793
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0259793&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0259793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Abdul Pinjari & Ram Pendyala & Chandra Bhat & Paul Waddell, 2011. "Modeling the choice continuum: an integrated model of residential location, auto ownership, bicycle ownership, and commute tour mode choice decisions," Transportation, Springer, vol. 38(6), pages 933-958, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Abhilash C. & Faghih Imani, Ahmadreza & Sivakumar, Aruna & Luna Xi, Yang & Miller, Eric J., 2024. "A joint analysis of accessibility and household trip frequencies by travel mode," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    2. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
    3. Bhat, Chandra R. & Astroza, Sebastian & Sidharthan, Raghuprasad & Alam, Mohammad Jobair Bin & Khushefati, Waleed H., 2014. "A joint count-continuous model of travel behavior with selection based on a multinomial probit residential density choice model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 31-51.
    4. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    5. Doddamani, Chetan & Manoj, M. & Maurya, Yashasvi, 2021. "Geographical scale of residential relocation and its impacts on vehicle ownership and travel behavior," Journal of Transport Geography, Elsevier, vol. 94(C).
    6. João De Abreu e Silva, 2018. "The Effects of Land-Use Patterns on Home-Based Tour Complexity and Total Distances Traveled: A Path Analysis," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    7. Jun Cao & Tanhua Jin & Tao Shou & Long Cheng & Zhicheng Liu & Frank Witlox, 2023. "Investigating the Nonlinear Relationship Between Car Dependency and the Built Environment," Urban Planning, Cogitatio Press, vol. 8(3), pages 41-55.
    8. Dorsa Alipour & Hussein Dia, 2023. "A Systematic Review of the Role of Land Use, Transport, and Energy-Environment Integration in Shaping Sustainable Cities," Sustainability, MDPI, vol. 15(8), pages 1-29, April.
    9. Humphreys, John & Ahern, Aoife, 2019. "Is travel based residential self-selection a significant influence in modal choice and household location decisions?," Transport Policy, Elsevier, vol. 75(C), pages 150-160.
    10. Guo, Jia & Feng, Tao & Timmermans, Harry J.P., 2019. "Time-varying dependencies among mobility decisions and key life course events: An application of dynamic Bayesian decision networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 82-92.
    11. Schmid, Basil & Becker, Felix & Axhausen, Kay W. & Widmer, Paul & Stein, Petra, 2023. "A simultaneous model of residential location, mobility tool ownership and mode choice using latent variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    12. Yifei Xie & Mazen Danaf & Carlos Lima Azevedo & Arun Prakash Akkinepally & Bilge Atasoy & Kyungsoo Jeong & Ravi Seshadri & Moshe Ben-Akiva, 2019. "Behavioral modeling of on-demand mobility services: general framework and application to sustainable travel incentives," Transportation, Springer, vol. 46(6), pages 2017-2039, December.
    13. Wali, Behram & Frank, Lawrence D. & Saelens, Brian E. & Young, Deborah R. & Meenan, Richard T. & Dickerson, John F. & Keast, Erin M. & Fortmann, Stephen P., 2024. "Associations of walkability, regional and transit accessibility around home and workplace with active and sedentary travel," Journal of Transport Geography, Elsevier, vol. 116(C).
    14. Chandra R. Bhat & Rajesh Paleti & Palvinder Singh, 2014. "A Spatial Multivariate Count Model For Firm Location Decisions," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 462-502, June.
    15. Haque, Md Bashirul & Choudhury, Charisma & Hess, Stephane, 2020. "Understanding differences in residential location preferences between ownership and renting: A case study of London," Journal of Transport Geography, Elsevier, vol. 88(C).
    16. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    17. Vincent Chakour & Naveen Eluru, 2014. "Analyzing commuter train user behavior: a decision framework for access mode and station choice," Transportation, Springer, vol. 41(1), pages 211-228, January.
    18. Faan Chen & Adriano Borges Costa, 2024. "Exploring the causal effects of the built environment on travel behavior: a unique randomized experiment in Shanghai," Transportation, Springer, vol. 51(1), pages 215-245, February.
    19. Tran, Minh Tu & Zhang, Junyi & Chikaraishi, Makoto & Fujiwara, Akimasa, 2016. "A joint analysis of residential location, work location and commuting mode choices in Hanoi, Vietnam," Journal of Transport Geography, Elsevier, vol. 54(C), pages 181-193.
    20. Jason Cao & Xiaoshu Cao, 2014. "The Impacts of LRT, Neighbourhood Characteristics, and Self-selection on Auto Ownership: Evidence from Minneapolis-St. Paul," Urban Studies, Urban Studies Journal Limited, vol. 51(10), pages 2068-2087, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0259793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.