Predicting fracture outcomes from clinical registry data using artificial intelligence supplemented models for evidence-informed treatment (PRAISE) study protocol
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0257361
Download full text from publisher
References listed on IDEAS
- Luts, Jan & Molenberghs, Geert & Verbeke, Geert & Van Huffel, Sabine & Suykens, Johan A.K., 2012. "A mixed effects least squares support vector machine model for classification of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 611-628.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Matthew Coleman & Joanna F. Dipnall & Myong Chol Jung & Lan Du, 2022. "PreRadE: Pretraining Tasks on Radiology Images and Reports Evaluation Framework," Mathematics, MDPI, vol. 10(24), pages 1-14, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Xin & Jeske, Daniel R. & Li, Jun & Wong, Vance, 2016. "A sequential logistic regression classifier based on mixed effects with applications to longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 238-249.
- Luts, Jan & Ormerod, John T., 2014. "Mean field variational Bayesian inference for support vector machine classification," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 163-176.
- Ana Arribas-Gil & Rolando De la Cruz & Emilie Lebarbier & Cristian Meza, 2015. "Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators," Biometrics, The International Biometric Society, vol. 71(2), pages 333-343, June.
- Huang, Xiaolin & Shi, Lei & Suykens, Johan A.K., 2014. "Asymmetric least squares support vector machine classifiers," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 395-405.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0257361. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.