IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0256889.html
   My bibliography  Save this article

“Hot-spotting” to improve vaccine allocation by harnessing digital contact tracing technology: An application of percolation theory

Author

Listed:
  • Mark D Penney
  • Yigit Yargic
  • Lee Smolin
  • Edward W Thommes
  • Madhur Anand
  • Chris T Bauch

Abstract

Vaccinating individuals with more exposure to others can be disproportionately effective, in theory, but identifying these individuals is difficult and has long prevented implementation of such strategies. Here, we propose how the technology underlying digital contact tracing could be harnessed to boost vaccine coverage among these individuals. In order to assess the impact of this “hot-spotting” proposal we model the spread of disease using percolation theory, a collection of analytical techniques from statistical physics. Furthermore, we introduce a novel measure which we call the efficiency, defined as the percentage decrease in the reproduction number per percentage of the population vaccinated. We find that optimal implementations of the proposal can achieve herd immunity with as little as half as many vaccine doses as a non-targeted strategy, and is attractive even for relatively low rates of app usage.

Suggested Citation

  • Mark D Penney & Yigit Yargic & Lee Smolin & Edward W Thommes & Madhur Anand & Chris T Bauch, 2021. "“Hot-spotting” to improve vaccine allocation by harnessing digital contact tracing technology: An application of percolation theory," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0256889
    DOI: 10.1371/journal.pone.0256889
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256889
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0256889&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0256889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald McKenzie & Maureen C. Kennedy, 2012. "Power laws reveal phase transitions in landscape controls of fire regimes," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
    2. Serina Chang & Emma Pierson & Pang Wei Koh & Jaline Gerardin & Beth Redbird & David Grusky & Jure Leskovec, 2021. "Mobility network models of COVID-19 explain inequities and inform reopening," Nature, Nature, vol. 589(7840), pages 82-87, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eugenio Valdano & Davide Colombi & Chiara Poletto & Vittoria Colizza, 2023. "Epidemic graph diagrams as analytics for epidemic control in the data-rich era," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    3. Yoon, Jisung & Park, Jinseo & Yun, Jinhyuk & Jung, Woo-Sung, 2023. "Quantifying knowledge synchronization with the network-driven approach," Journal of Informetrics, Elsevier, vol. 17(4).
    4. X. Angela Yao & Andrew Crooks & Bin Jiang & Jukka Krisp & Xintao Liu & Haosheng Huang, 2023. "An overview of urban analytical approaches to combating the Covid-19 pandemic," Environment and Planning B, , vol. 50(5), pages 1133-1143, June.
    5. Till Baldenius & Nicolas Koch & Hannah Klauber & Nadja Klein, 2023. "Heat increases experienced racial segregation in the United States," Papers 2306.13772, arXiv.org.
    6. Wan, Jinming & Ichinose, Genki & Small, Michael & Sayama, Hiroki & Moreno, Yamir & Cheng, Changqing, 2022. "Multilayer networks with higher-order interaction reveal the impact of collective behavior on epidemic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Pană, Gabriel Tiberiu & Nicolin-Żaczek, Alexandru, 2023. "Motifs in earthquake networks: Romania, Italy, United States of America, and Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    8. Hasan Alp Boz & Mohsen Bahrami & Selim Balcisoy & Burcin Bozkaya & Nina Mazar & Aaron Nichols & Alex Pentland, 2024. "Investigating neighborhood adaptability using mobility networks: a case study of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    9. Baghersad, Milad & Emadikhiav, Mohsen & Huang, C. Derrick & Behara, Ravi S., 2023. "Modularity maximization to design contiguous policy zones for pandemic response," European Journal of Operational Research, Elsevier, vol. 304(1), pages 99-112.
    10. Byungjin Park & Joonmo Cho, 2023. "COVID-19 and Age Disparity in Credit Card Expenditures in Korea: Implications on the Government Relief Fund," SAGE Open, , vol. 13(4), pages 21582440231, December.
    11. Rodier, Caroline PhD & Horn, Abigail PhD & Zhang, Yunwan MSc & Kaddoura, Ihab PhD & Müller, Sebastian MSc, 2023. "Effectiveness of Nonpharmaceutical Interventions to Avert the Second COVID-19 Surge in Los Angeles County: A Simulation Study," Institute of Transportation Studies, Working Paper Series qt5f78h654, Institute of Transportation Studies, UC Davis.
    12. Zhou, Mingzhi & Zhou, Jiangping, 2024. "Multiscalar trip resilience and metro station-area characteristics: A case study of Hong Kong amid the pandemic," Journal of Transport Geography, Elsevier, vol. 116(C).
    13. Wang, Jueyu & Kaza, Nikhil & McDonald, Noreen C. & Khanal, Kshitiz, 2022. "Socio-economic disparities in activity-travel behavior adaptation during the COVID-19 pandemic in North Carolina," Transport Policy, Elsevier, vol. 125(C), pages 70-78.
    14. Xiaoyan Mu & Xiaohu Zhang & Anthony Gar-On Yeh & Yang Yu & Jiejing Wang, 2023. "Structural Changes in Human Mobility Under the Zero-COVID Strategy in China," Environment and Planning B, , vol. 50(9), pages 2527-2542, November.
    15. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    16. Jina Suh & Eric Horvitz & Ryen W. White & Tim Althoff, 2022. "Disparate impacts on online information access during the Covid-19 pandemic," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    17. Martina Jakob & Sebastian Heinrich, 2023. "Measuring Human Capital with Social Media Data and Machine Learning," University of Bern Social Sciences Working Papers 46, University of Bern, Department of Social Sciences.
    18. Victor Chernozhukov & Hiroyuki Kasahara & Paul Schrimpf, 2021. "The association of opening K–12 schools with the spread of COVID-19 in the United States: County-level panel data analysis," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 118(42), pages 2103420118-, October.
    19. Xinming Du, 2023. "Symptom or Culprit? Social Media, Air Pollution, and Violence," CESifo Working Paper Series 10296, CESifo.
    20. Reuben Kindred & Glen W. Bates, 2023. "The Influence of the COVID-19 Pandemic on Social Anxiety: A Systematic Review," IJERPH, MDPI, vol. 20(3), pages 1-28, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.