IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0256499.html
   My bibliography  Save this article

Testing for goodness rather than lack of fit of continuous probability distributions

Author

Listed:
  • Stefan Wellek

Abstract

The vast majority of testing procedures presented in the literature as goodness-of-fit tests fail to accomplish what the term is promising. Actually, a significant result of such a test indicates that the true distribution underlying the data differs substantially from the assumed model, whereas the true objective is usually to establish that the model fits the data sufficiently well. Meeting that objective requires to carry out a testing procedure for a problem in which the statement that the deviations between model and true distribution are small, plays the role of the alternative hypothesis. Testing procedures of this kind, for which the term tests for equivalence has been coined in statistical usage, are available for establishing goodness-of-fit of discrete distributions. We show how this methodology can be extended to settings where interest is in establishing goodness-of-fit of distributions of the continuous type.

Suggested Citation

  • Stefan Wellek, 2021. "Testing for goodness rather than lack of fit of continuous probability distributions," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-12, September.
  • Handle: RePEc:plo:pone00:0256499
    DOI: 10.1371/journal.pone.0256499
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0256499
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0256499&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0256499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Miller, Forrest R. & Neill, James W., 2016. "Lack of fit tests for linear regression models with many predictor variables using minimal weighted maximal matchings," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 14-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0256499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.