IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v150y2016icp14-26.html
   My bibliography  Save this article

Lack of fit tests for linear regression models with many predictor variables using minimal weighted maximal matchings

Author

Listed:
  • Miller, Forrest R.
  • Neill, James W.

Abstract

We develop lack of fit tests for linear regression models with many predictor variables. General alternatives for model comparison are constructed using minimal weighted maximal matchings consistent with graphs on the predictor vectors. The weighted graphs we employ have edges based on model-driven distance thresholds in predictor space, thereby making our testing procedure implementable and computationally efficient in higher dimensional settings. In addition, it is shown that the testing procedure adapts to efficacious maximal matchings. An asymptotic analysis, along with simulation results, demonstrate that our tests are effective against a broad class of lack of fit.

Suggested Citation

  • Miller, Forrest R. & Neill, James W., 2016. "Lack of fit tests for linear regression models with many predictor variables using minimal weighted maximal matchings," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 14-26.
  • Handle: RePEc:eee:jmvana:v:150:y:2016:i:c:p:14-26
    DOI: 10.1016/j.jmva.2016.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16300264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan J. & Huang L-S., 2001. "Goodness-of-Fit Tests for Parametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 640-652, June.
    2. Christensen, Ronald & Sun, Siu Kei, 2010. "Alternative Goodness-of-Fit Tests for Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 291-301.
    3. Ronald Christensen & Yong Lin, 2015. "Lack-of-fit Tests Based On Partial Sums of Residuals," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(13), pages 2862-2880, July.
    4. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    5. Pascal Lavergne & Valentin Patilea, 2012. "One for All and All for One: Regression Checks With Many Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 41-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Wellek, 2021. "Testing for goodness rather than lack of fit of continuous probability distributions," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-12, September.
    2. Barrientos, Andrés F. & Canale, Antonio, 2021. "A Bayesian goodness-of-fit test for regression," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junmin Liu & Deli Zhu & Luoyao Yu & Xuehu Zhu, 2023. "Specification testing of partially linear single-index models: a groupwise dimension reduction-based adaptive-to-model approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 232-262, March.
    2. Bodhisattva Sen & Mary Meyer, 2017. "Testing against a linear regression model using ideas from shape-restricted estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 423-448, March.
    3. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    4. Masamune Iwasawa, 2015. "A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models," Econometrics, MDPI, vol. 3(3), pages 1-31, September.
    5. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    6. Pascal Lavergne & Valentin Patilea, 2011. "One for All and All for One: Regression Checks With Many Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 41-52, January.
    7. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    8. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.
    9. Li, Lingzhu & Chiu, Sung Nok & Zhu, Lixing, 2019. "Model checking for regressions: An approach bridging between local smoothing and global smoothing methods," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 64-82.
    10. Olivier Lopez & Valentin Patilea, 2007. "Nonparametric Lack-of-fit Tests for Parametric Mean-Regression Model with Censored Data," Working Papers 2007-01, Center for Research in Economics and Statistics.
    11. Liu, Ran & Zhu, Lixing, 2023. "Specification testing for ordinary differential equation models with fixed design and applications to COVID-19 epidemic models," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    12. Jakob Peterlin & Nataša Kejžar & Rok Blagus, 2023. "Correct specification of design matrices in linear mixed effects models: tests with graphical representation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 184-210, March.
    13. Xie, Chuanlong & Zhu, Lixing, 2019. "A goodness-of-fit test for variable-adjusted models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 27-48.
    14. Teresa Ledwina & Grzegorz Wyłupek, 2012. "Nonparametric tests for stochastic ordering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 730-756, December.
    15. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    16. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    17. Temel, Tugrul T., 2001. "A Nonparametric Hypothesis Test Via The Bootstrap Resampling," 2001 Annual meeting, August 5-8, Chicago, IL 20600, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    19. repec:ebl:ecbull:v:3:y:2005:i:11:p:1-10 is not listed on IDEAS
    20. Stefania D'Amico, 2004. "Density Estimation and Combination under Model Ambiguity," Computing in Economics and Finance 2004 273, Society for Computational Economics.
    21. Hans R.A. Koster & Jan Rouwendal, 2012. "The Impact Of Mixed Land Use On Residential Property Values," Journal of Regional Science, Wiley Blackwell, vol. 52(5), pages 733-761, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:150:y:2016:i:c:p:14-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.