IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0253873.html
   My bibliography  Save this article

Penalized homophily latent space models for directed scale-free networks

Author

Listed:
  • Hanxuan Yang
  • Wei Xiong
  • Xueliang Zhang
  • Kai Wang
  • Maozai Tian

Abstract

Online social networks like Twitter and Facebook are among the most popular sites on the Internet. Most online social networks involve some specific features, including reciprocity, transitivity and degree heterogeneity. Such networks are so called scale-free networks and have drawn lots of attention in research. The aim of this paper is to develop a novel methodology for directed network embedding within the latent space model (LSM) framework. It is known, the link probability between two individuals may increase as the features of each become similar, which is referred to as homophily attributes. To this end, penalized pair-specific attributes, acting as a distance measure, are introduced to provide with more powerful interpretation and improve link prediction accuracy, named penalized homophily latent space models (PHLSM). The proposed models also involve in-degree heterogeneity of directed scale-free networks by embedding with the popularity scales. We also introduce LASSO-based PHLSM to produce an accurate and sparse model for high-dimensional covariates. We make Bayesian inference using MCMC algorithms. The finite sample performance of the proposed models is evaluated by three benchmark simulation datasets and two real data examples. Our methods are competitive and interpretable, they outperform existing approaches for fitting directed networks.

Suggested Citation

  • Hanxuan Yang & Wei Xiong & Xueliang Zhang & Kai Wang & Maozai Tian, 2021. "Penalized homophily latent space models for directed scale-free networks," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-25, August.
  • Handle: RePEc:plo:pone00:0253873
    DOI: 10.1371/journal.pone.0253873
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253873
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0253873&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0253873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    2. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    3. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    4. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    5. Guang Ouyang & Dipak K. Dey & Panpan Zhang, 2020. "Clique-Based Method for Social Network Clustering," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 254-274, April.
    6. Thanne Mafaziya Nijamdeen & Jean Huge & Hajaniaina Ratsimbazafy & Kodikara Arachchilage Sunanda Kodikara & Farid Dahdouh-Guebas, 2022. "A social network analysis of mangrove management stakeholders in Sri Lanka's Northern Province," ULB Institutional Repository 2013/349602, ULB -- Universite Libre de Bruxelles.
    7. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    8. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    9. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    10. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    11. Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.
    12. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    13. West, Robert M. & House, Allan O. & Keen, Justin & Ward, Vicky L., 2015. "Using the structure of social networks to map inter-agency relationships in public health services," Social Science & Medicine, Elsevier, vol. 145(C), pages 107-114.
    14. Chiara Di Maria & Antonino Abbruzzo & Gianfranco Lovison, 2022. "Networks as mediating variables: a Bayesian latent space approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 1015-1035, October.
    15. Xiao-Li Meng, 2016. "Discussion: Should a Working Model Actually Work?," International Statistical Review, International Statistical Institute, vol. 84(3), pages 362-367, December.
    16. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    18. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
    19. Cristiano Varin & Manuela Cattelan & David Firth, 2016. "Statistical modelling of citation exchange between statistics journals," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(1), pages 1-63, January.
    20. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0253873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.