IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0252743.html
   My bibliography  Save this article

Quantifying the inhibitory impact of soluble phenolics on anaerobic carbon mineralization in a thawing permafrost peatland

Author

Listed:
  • Alexandra B Cory
  • Jeffrey P Chanton
  • Robert G M Spencer
  • Olivia C Ogles
  • Virginia I Rich
  • Carmody K McCalley
  • IsoGenie Project Coordinators
  • EMERGE 2021 Field Team
  • Rachel M Wilson

Abstract

The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands (“bogs”) are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone (“PVP”), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO2 production was significantly higher in the bog—62 ± 16%—than the fen—14 ± 4%. This difference was found to be more substantial with regards to methane production—wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs’ extraordinary recalcitrance and high (relative to other peatland habitats) CO2:CH4 production ratios.

Suggested Citation

  • Alexandra B Cory & Jeffrey P Chanton & Robert G M Spencer & Olivia C Ogles & Virginia I Rich & Carmody K McCalley & IsoGenie Project Coordinators & EMERGE 2021 Field Team & Rachel M Wilson, 2022. "Quantifying the inhibitory impact of soluble phenolics on anaerobic carbon mineralization in a thawing permafrost peatland," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-19, February.
  • Handle: RePEc:plo:pone00:0252743
    DOI: 10.1371/journal.pone.0252743
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252743
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0252743&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0252743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carmody K. McCalley & Ben J. Woodcroft & Suzanne B. Hodgkins & Richard A. Wehr & Eun-Hae Kim & Rhiannon Mondav & Patrick M. Crill & Jeffrey P. Chanton & Virginia I. Rich & Gene W. Tyson & Scott R. Sal, 2014. "Methane dynamics regulated by microbial community response to permafrost thaw," Nature, Nature, vol. 514(7523), pages 478-481, October.
    2. Suzanne B. Hodgkins & Curtis J. Richardson & René Dommain & Hongjun Wang & Paul H. Glaser & Brittany Verbeke & B. Rose Winkler & Alexander R. Cobb & Virginia I. Rich & Malak Missilmani & Neal Flanagan, 2018. "Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bong Gu Kang & Kyung-Min Seo & Tag Gon Kim, 2018. "Communication Analysis of Network-Centric Warfare via Transformation of System of Systems Model into Integrated System Model Using Neural Network," Complexity, Hindawi, vol. 2018, pages 1-16, June.
    2. Nicholas O. E. Ofiti & Michael W. I. Schmidt & Samuel Abiven & Paul J. Hanson & Colleen M. Iversen & Rachel M. Wilson & Joel E. Kostka & Guido L. B. Wiesenberg & Avni Malhotra, 2023. "Climate warming and elevated CO2 alter peatland soil carbon sources and stability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Sudakow, Ivan & Savenkova, Elena & Kondrashov, Dmitri & Vakulenko, Sergey A. & Sashina, Elena, 2023. "Diverse soil microbial communities may mitigate climate system bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Alastair J. Crawford & Claire M. Belcher & Stacey New & Angela Gallego-Sala & Graeme T. Swindles & Susan Page & Tatiana A. Blyakharchuk & Hinsby Cadillo-Quiroz & Dan J. Charman & Mariusz Gałka & Paul , 2024. "Tropical peat composition may provide a negative feedback on fire occurrence and severity," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Futing Liu & Shuqi Qin & Kai Fang & Leiyi Chen & Yunfeng Peng & Pete Smith & Yuanhe Yang, 2022. "Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Xiaoqian Li & Jianwei Xing & Shouji Pang & Youhai Zhu & Shuai Zhang & Rui Xiao & Cheng Lu, 2022. "Carbon Isotopic Evidence for Gas Hydrate Release and Its Significance on Seasonal Wetland Methane Emission in the Muli Permafrost of the Qinghai-Tibet Plateau," IJERPH, MDPI, vol. 19(4), pages 1-14, February.
    7. Nur Azima Busman & Nagamitsu Maie & Che Fauziah Ishak & Muhammad Firdaus Sulaiman & Lulie Melling, 2021. "Effect of compaction on soil CO2 and CH4 fluxes from tropical peatland in Sarawak, Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11646-11659, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0252743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.