IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246738.html
   My bibliography  Save this article

Hybrid BW-EDAS MCDM methodology for optimal industrial robot selection

Author

Listed:
  • Tabasam Rashid
  • Asif Ali
  • Yu-Ming Chu

Abstract

Industrial robots have different capabilities and specifications according to the required applications. It is becoming difficult to select a suitable robot for specific applications and requirements due to the availability of several types with different specifications of robots in the market. Best-worst method is a useful, highly consistent and reliable method to derive weights of criteria and it is worthy to integrate it with the evaluation based on distance from average solution (EDAS) method that is more applicable and needs fewer number of calculations as compared to other methods. An example is presented to show the validity and usability of the proposed methodology. Comparison of ranking results matches with the well-known distance-based approach, technique for order preference by similarity to ideal solution and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) methods showing the robustness of the best-worst EDAS hybrid method. Sensitivity analysis performed using eighty to one ratio shows that the proposed hybrid MCDM methodology is more stable and reliable.

Suggested Citation

  • Tabasam Rashid & Asif Ali & Yu-Ming Chu, 2021. "Hybrid BW-EDAS MCDM methodology for optimal industrial robot selection," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-18, February.
  • Handle: RePEc:plo:pone00:0246738
    DOI: 10.1371/journal.pone.0246738
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246738
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246738&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gupta, Himanshu, 2018. "Evaluating service quality of airline industry using hybrid best worst method and VIKOR," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 35-47.
    2. Alireza Alinezhad & Javad Khalili, 2019. "New Methods and Applications in Multiple Attribute Decision Making (MADM)," International Series in Operations Research and Management Science, Springer, number 978-3-030-15009-9, April.
    3. Geerten Van de Kaa & Daniel Scholten & Jafar Rezaei & Christine Milchram, 2017. "The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach," Energies, MDPI, vol. 10(11), pages 1-13, October.
    4. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van de Kaa, G. & Fens, T. & Rezaei, J. & Kaynak, D. & Hatun, Z. & Tsilimeni-Archangelidi, A., 2019. "Realizing smart meter connectivity: Analyzing the competing technologies Power line communication, mobile telephony, and radio frequency using the best worst method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 320-327.
    2. Morteza Yazdani & Prasenjit Chatterjee & Maria Jose Montero-Simo & Rafael A. Araque-Padilla, 2019. "An Integrated Multi-Attribute Model for Evaluation of Sustainable Mobile Phone," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    3. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    4. Vineet Kaushik & Ashwani Kumar & Himanshu Gupta & Gaurav Dixit, 2022. "Modelling and prioritizing the factors for online apparel return using BWM approach," Electronic Commerce Research, Springer, vol. 22(3), pages 843-873, September.
    5. Yiğit Kazançoğlu & Muhittin Sağnak & Çisem Lafcı & Sunil Luthra & Anil Kumar & Caner Taçoğlu, 2021. "Big Data-Enabled Solutions Framework to Overcoming the Barriers to Circular Economy Initiatives in Healthcare Sector," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    6. Jian Wang & Jin-Chun Huang & Shan-Lin Huang & Gwo-Hshiung Tzeng & Ting Zhu, 2021. "Improvement Path for Resource-Constrained Cities Identified Using an Environmental Co-Governance Assessment Framework Based on BWM-mV Model," IJERPH, MDPI, vol. 18(9), pages 1-30, May.
    7. Mališa Žižović & Dragan Pamučar & Goran Ćirović & Miodrag M. Žižović & Boža D. Miljković, 2020. "A Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria Significance Levels (NDSL)," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
    8. Hoogerbrugge, Coen & van de Kaa, Geerten & Chappin, Emile, 2023. "Adoption of quality standards for corporate greenhouse gas inventories: The importance of other stakeholders," International Journal of Production Economics, Elsevier, vol. 260(C).
    9. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Selecting the Optimal Micro-Grid Planning Program Using a Novel Multi-Criteria Decision Making Model Based on Grey Cumulative Prospect Theory," Energies, MDPI, vol. 11(7), pages 1-24, July.
    10. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    11. Mohammadi, Majid & Rezaei, Jafar, 2020. "Bayesian best-worst method: A probabilistic group decision making model," Omega, Elsevier, vol. 96(C).
    12. Madjid Tavana & Akram Shaabani & Francisco Javier Santos-Arteaga & Iman Raeesi Vanani, 2020. "A Review of Uncertain Decision-Making Methods in Energy Management Using Text Mining and Data Analytics," Energies, MDPI, vol. 13(15), pages 1-23, August.
    13. Chakraborty, Santonab & Ghosh, Sayantan & Sarker, Baneswar & Chakraborty, Shankar, 2020. "An integrated performance evaluation approach for the Indian international airports," Journal of Air Transport Management, Elsevier, vol. 88(C).
    14. Amin Vafadarnikjoo & Madjid Tavana & Tiago Botelho & Konstantinos Chalvatzis, 2020. "A neutrosophic enhanced best–worst method for considering decision-makers’ confidence in the best and worst criteria," Annals of Operations Research, Springer, vol. 289(2), pages 391-418, June.
    15. Gao, Fei & Wang, Weixiang & Bi, Chencan & Bi, Wenhao & Zhang, An, 2023. "Prioritization of used aircraft acquisition criteria: A fuzzy best–worst method (BWM)-based approach," Journal of Air Transport Management, Elsevier, vol. 107(C).
    16. van de Kaa, Geerten & van Ek, Martijn & Kamp, Linda M. & Rezaei, Jafar, 2020. "Wind turbine technology battles: Gearbox versus direct drive - opening up the black box of technology characteristics," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    17. Tanrıverdi, Gökhan & Ecer, Fatih & Durak, Mehmet Şahin, 2022. "Exploring factors affecting airport selection during the COVID-19 pandemic from air cargo carriers’ perspective through the triangular fuzzy Dombi-Bonferroni BWM methodology," Journal of Air Transport Management, Elsevier, vol. 105(C).
    18. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Comprehensive Performance Evaluation of Electricity Grid Corporations Employing a Novel MCDM Model," Sustainability, MDPI, vol. 10(7), pages 1-23, June.
    19. Shih-Chia Chang & Ming-Tsang Lu & Mei-Jen Chen & Li-Hua Huang, 2021. "Evaluating the Application of CSR in the High-Tech Industry during the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    20. Kheybari, Siamak & Kazemi, Mostafa & Rezaei, Jafar, 2019. "Bioethanol facility location selection using best-worst method," Applied Energy, Elsevier, vol. 242(C), pages 612-623.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.