IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0246529.html
   My bibliography  Save this article

Unsupervised learning of Swiss population spatial distribution

Author

Listed:
  • Mikhail Kanevski

Abstract

The paper deals with the analysis of spatial distribution of Swiss population using fractal concepts and unsupervised learning algorithms. The research methodology is based on the development of a high dimensional feature space by calculating local growth curves, widely used in fractal dimension estimation and on the application of clustering algorithms in order to reveal the patterns of spatial population distribution. The notion “unsupervised” also means, that only some general criteria—density, dimensionality, homogeneity, are used to construct an input feature space, without adding any supervised/expert knowledge. The approach is very powerful and provides a comprehensive local information about density and homogeneity/fractality of spatially distributed point patterns.

Suggested Citation

  • Mikhail Kanevski, 2021. "Unsupervised learning of Swiss population spatial distribution," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-24, February.
  • Handle: RePEc:plo:pone00:0246529
    DOI: 10.1371/journal.pone.0246529
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246529
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0246529&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0246529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mayra Z Rodriguez & Cesar H Comin & Dalcimar Casanova & Odemir M Bruno & Diego R Amancio & Luciano da F Costa & Francisco A Rodrigues, 2019. "Clustering algorithms: A comparative approach," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-34, January.
    2. Isabelle Thomas & Pierre Frankhauser & Benoit Frenay & Michel Verleysen, 2010. "Clustering Patterns of Urban Built-up Areas with Curves of Fractal Scaling Behaviour," Environment and Planning B, , vol. 37(5), pages 942-954, October.
    3. Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolívar, Fernando & Duran, Miguel A. & Lozano-Vivas, Ana, 2023. "Bank business models, size, and profitability," Finance Research Letters, Elsevier, vol. 53(C).
    2. Reder, Maik & Yürüşen, Nurseda Y. & Melero, Julio J., 2018. "Data-driven learning framework for associating weather conditions and wind turbine failures," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 554-569.
    3. Marcin Gąsior, 2021. "Environmental Attitudes and Willingness to Purchase Online—Classification Approach," Sustainability, MDPI, vol. 13(15), pages 1-17, August.
    4. Isabelle Thomas & Pierre Frankhauser, 2013. "Fractal Dimensions of the Built-up Footprint: Buildings versus Roads. Fractal Evidence from Antwerp (Belgium)," Environment and Planning B, , vol. 40(2), pages 310-329, April.
    5. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    6. Fernandez Martinez, Roberto & Lostado Lorza, Ruben & Santos Delgado, Ana Alexandra & Piedra, Nelson, 2021. "Use of classification trees and rule-based models to optimize the funding assignment to research projects: A case study of UTPL," Journal of Informetrics, Elsevier, vol. 15(1).
    7. Corrêa, Edilson A. & Marinho, Vanessa Q. & Amancio, Diego R., 2020. "Semantic flow in language networks discriminates texts by genre and publication date," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    8. Saemi Shin & Won Suck Yoon & Sang-Hoon Byeon, 2022. "Trends in Occupational Infectious Diseases in South Korea and Classification of Industries According to the Risk of Biological Hazards Using K-Means Clustering," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    9. Song He & Xinyu Song & Xiaoxi Yang & Jijun Yu & Yuqi Wen & Lianlian Wu & Bowei Yan & Jiannan Feng & Xiaochen Bo, 2021. "COMSUC: A web server for the identification of consensus molecular subtypes of cancer based on multiple methods and multi-omics data," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-10, March.
    10. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    11. Cyril Atkinson-Clement & Eléonore Pigalle, 2021. "What can we learn from Covid-19 pandemic’s impact on human behaviour? The case of France’s lockdown," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-12, December.
    12. Kreitmair, Ursula & Bower-Bir, Jacob, 2021. "Too different to solve climate change? Experimental evidence on the effects of production and benefit heterogeneity on collective action," Ecological Economics, Elsevier, vol. 184(C).
    13. Getaneh Addis Tessema & Jan van der Borg & Anton Van Rompaey & Steven Van Passel & Enyew Adgo & Amare Sewnet Minale & Kerebih Asrese & Amaury Frankl & Jean Poesen, 2022. "Benefit Segmentation of Tourists to Geosites and Its Implications for Sustainable Development of Geotourism in the Southern Lake Tana Region, Ethiopia," Sustainability, MDPI, vol. 14(6), pages 1-25, March.
    14. Wu, Tong & Rocha, Juan C. & Berry, Kevin & Chaigneau, Tomas & Hamann, Maike & Lindkvist, Emilie & Qiu, Jiangxiao & Schill, Caroline & Shepon, Alon & Crépin, Anne-Sophie & Folke, Carl, 2024. "Triple Bottom Line or Trilemma? Global Tradeoffs Between Prosperity, Inequality, and the Environment," World Development, Elsevier, vol. 178(C).
    15. Ioannis Mikrou & Nickolas S. Sapidis, 2024. "Enhancing operational research in mechatronic systems via modularization: comparative analysis of four clustering algorithms using validation indices," Operational Research, Springer, vol. 24(4), pages 1-44, December.
    16. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    17. Petricli, Gulcan & Inkaya, Tulin & Gokay Emel, Gul, 2024. "Identifying green citizen typologies by mining household-level survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    18. Young Hyun Kim & Kug Jin Jeon & Chena Lee & Yoon Joo Choi & Hoi-In Jung & Sang-Sun Han, 2021. "Analysis of the mandibular canal course using unsupervised machine learning algorithm," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-13, November.
    19. Ebba Mark & Ryan Rafaty & Moritz Schwarz, 2022. "Spatial-temporal dynamics of employment shocks in declining coal mining regions and potentialities of the 'just transition'," Papers 2211.12619, arXiv.org.
    20. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0246529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.