Analysis of the real number of infected people by COVID-19: A system dynamics approach
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0245728
Download full text from publisher
References listed on IDEAS
- Reuven Y. Rubinstein & Ruth Marcus, 1985. "Efficiency of Multivariate Control Variates in Monte Carlo Simulation," Operations Research, INFORMS, vol. 33(3), pages 661-677, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
- Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
- Rubinstein, Reuven Y., 1986. "The score function approach for sensitivity analysis of computer simulation models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(5), pages 351-379.
- Kenneth W. Bauer & James R. Wilson, 1992. "Controlāvariate selection criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 307-321, April.
- Kevin S. Zhang & Traian A. Pirvu, 2020. "Numerical Simulation of Exchange Option with Finite Liquidity: Controlled Variate Model," Papers 2006.07771, arXiv.org.
- Amano, Tomoyuki & Taniguchi, Masanobu, 2011. "Control variate method for stationary processes," Journal of Econometrics, Elsevier, vol. 165(1), pages 20-29.
- Peter W. Glynn & Donald L. Iglehart, 1989. "The optimal linear combination of control variates in the presence of asymptotically negligible bias," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(5), pages 683-692, October.
- Chris J. Oates & Mark Girolami & Nicolas Chopin, 2017. "Control functionals for Monte Carlo integration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 695-718, June.
- Schweinberger, Michael & Snijders, Tom A.B., 2007. "Markov models for digraph panel data: Monte Carlo-based derivative estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4465-4483, May.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245728. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.