IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0245582.html
   My bibliography  Save this article

Method comparison studies of telomere length measurement using qPCR approaches: A critical appraisal of the literature

Author

Listed:
  • Alyssa R Lindrose
  • Lauren W Y McLester-Davis
  • Renee I Tristano
  • Leila Kataria
  • Shahinaz M Gadalla
  • Dan T A Eisenberg
  • Simon Verhulst
  • Stacy Drury

Abstract

Use of telomere length (TL) as a biomarker for various environmental exposures and diseases has increased in recent years. Various methods have been developed to measure telomere length. Polymerase chain reaction (PCR)-based methods remain wide-spread for population-based studies due to the high-throughput capability. While several studies have evaluated the repeatability and reproducibility of different TL measurement methods, the results have been variable. We conducted a literature review of TL measurement cross-method comparison studies that included a PCR-based method published between January 1, 2002 and May 25, 2020. A total of 25 articles were found that matched the inclusion criteria. Papers were reviewed for quality of methodologic reporting of sample and DNA quality, PCR assay characteristics, sample blinding, and analytic approaches to determine final TL. Overall, methodologic reporting was low as assessed by two different reporting guidelines for qPCR-based TL measurement. There was a wide range in the reported correlation between methods (as assessed by Pearson’s r) and few studies utilized the recommended intra-class correlation coefficient (ICC) for assessment of assay repeatability and methodologic comparisons. The sample size for nearly all studies was less than 100, raising concerns about statistical power. Overall, this review found that the current literature on the relation between TL measurement methods is lacking in validity and scientific rigor. In light of these findings, we present reporting guidelines for PCR-based TL measurement methods and results of analyses of the effect of assay repeatability (ICC) on statistical power of cross-sectional and longitudinal studies. Additional cross-laboratory studies with rigorous methodologic and statistical reporting, adequate sample size, and blinding are essential to accurately determine assay repeatability and replicability as well as the relation between TL measurement methods.

Suggested Citation

  • Alyssa R Lindrose & Lauren W Y McLester-Davis & Renee I Tristano & Leila Kataria & Shahinaz M Gadalla & Dan T A Eisenberg & Simon Verhulst & Stacy Drury, 2021. "Method comparison studies of telomere length measurement using qPCR approaches: A critical appraisal of the literature," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-23, January.
  • Handle: RePEc:plo:pone00:0245582
    DOI: 10.1371/journal.pone.0245582
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245582
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0245582&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0245582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsung-Po Lai & Ning Zhang & Jungsik Noh & Ilgen Mender & Enzo Tedone & Ejun Huang & Woodring E. Wright & Gaudenz Danuser & Jerry W. Shay, 2017. "A method for measuring the distribution of the shortest telomeres in cells and tissues," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    2. Daniel Nettle & Luise Seeker & Dan Nussey & Hannah Froy & Melissa Bateson, 2019. "Consequences of measurement error in qPCR telomere data: A simulation study," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Riham Smoom & Catherine Lee May & Vivian Ortiz & Mark Tigue & Hannah M. Kolev & Melissa Rowe & Yitzhak Reizel & Ashleigh Morgan & Nachshon Egyes & Dan Lichtental & Emmanuel Skordalakes & Klaus H. Kaes, 2023. "Telomouse—a mouse model with human-length telomeres generated by a single amino acid change in RTEL1," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Timothy K. Turkalo & Antonio Maffia & Johannes J. Schabort & Samuel G. Regalado & Mital Bhakta & Marco Blanchette & Diana C. J. Spierings & Peter M. Lansdorp & Dirk Hockemeyer, 2023. "A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Tobias T. Schmidt & Carly Tyer & Preeyesh Rughani & Candy Haggblom & Jeffrey R. Jones & Xiaoguang Dai & Kelly A. Frazer & Fred H. Gage & Sissel Juul & Scott Hickey & Jan Karlseder, 2024. "High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Santiago E. Sanchez & Yuchao Gu & Yan Wang & Anudeep Golla & Annika Martin & William Shomali & Dirk Hockemeyer & Sharon A. Savage & Steven E. Artandi, 2024. "Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.