IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01291-z.html
   My bibliography  Save this article

A method for measuring the distribution of the shortest telomeres in cells and tissues

Author

Listed:
  • Tsung-Po Lai

    (University of Texas Southwestern Medical Center)

  • Ning Zhang

    (University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

  • Jungsik Noh

    (University of Texas Southwestern Medical Center)

  • Ilgen Mender

    (University of Texas Southwestern Medical Center)

  • Enzo Tedone

    (University of Texas Southwestern Medical Center)

  • Ejun Huang

    (University of Texas Southwestern Medical Center)

  • Woodring E. Wright

    (University of Texas Southwestern Medical Center)

  • Gaudenz Danuser

    (University of Texas Southwestern Medical Center
    University of Texas Southwestern Medical Center)

  • Jerry W. Shay

    (University of Texas Southwestern Medical Center)

Abstract

Improved methods to measure the shortest (not just average) telomere lengths (TLs) are needed. We developed Telomere Shortest Length Assay (TeSLA), a technique that detects telomeres from all chromosome ends from

Suggested Citation

  • Tsung-Po Lai & Ning Zhang & Jungsik Noh & Ilgen Mender & Enzo Tedone & Ejun Huang & Woodring E. Wright & Gaudenz Danuser & Jerry W. Shay, 2017. "A method for measuring the distribution of the shortest telomeres in cells and tissues," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01291-z
    DOI: 10.1038/s41467-017-01291-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01291-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01291-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tobias T. Schmidt & Carly Tyer & Preeyesh Rughani & Candy Haggblom & Jeffrey R. Jones & Xiaoguang Dai & Kelly A. Frazer & Fred H. Gage & Sissel Juul & Scott Hickey & Jan Karlseder, 2024. "High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ilaria Rosso & Corey Jones-Weinert & Francesca Rossiello & Matteo Cabrini & Silvia Brambillasca & Leonel Munoz-Sagredo & Zeno Lavagnino & Emanuele Martini & Enzo Tedone & Massimiliano Garre’ & Julio A, 2023. "Alternative lengthening of telomeres (ALT) cells viability is dependent on C-rich telomeric RNAs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Riham Smoom & Catherine Lee May & Vivian Ortiz & Mark Tigue & Hannah M. Kolev & Melissa Rowe & Yitzhak Reizel & Ashleigh Morgan & Nachshon Egyes & Dan Lichtental & Emmanuel Skordalakes & Klaus H. Kaes, 2023. "Telomouse—a mouse model with human-length telomeres generated by a single amino acid change in RTEL1," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Santiago E. Sanchez & Yuchao Gu & Yan Wang & Anudeep Golla & Annika Martin & William Shomali & Dirk Hockemeyer & Sharon A. Savage & Steven E. Artandi, 2024. "Digital telomere measurement by long-read sequencing distinguishes healthy aging from disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Alyssa R Lindrose & Lauren W Y McLester-Davis & Renee I Tristano & Leila Kataria & Shahinaz M Gadalla & Dan T A Eisenberg & Simon Verhulst & Stacy Drury, 2021. "Method comparison studies of telomere length measurement using qPCR approaches: A critical appraisal of the literature," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-23, January.
    6. Timothy K. Turkalo & Antonio Maffia & Johannes J. Schabort & Samuel G. Regalado & Mital Bhakta & Marco Blanchette & Diana C. J. Spierings & Peter M. Lansdorp & Dirk Hockemeyer, 2023. "A non-genetic switch triggers alternative telomere lengthening and cellular immortalization in ATRX deficient cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01291-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.