IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0240379.html
   My bibliography  Save this article

Risk of cardiac events with azithromycin—A prediction model

Author

Listed:
  • Haridarshan Patel
  • Robert J DiDomenico
  • Katie J Suda
  • Glen T Schumock
  • Gregory S Calip
  • Todd A Lee

Abstract

Previous studies have suggested an increased risk of cardiac events with azithromycin, but the predictors of such events are unknown. We sought to develop and validate two prediction models to identify such predictors. We used data from Truven Marketscan Database (01/2009 to 06/2015). Using a split-sample approach, we developed two prediction models, which included baseline demographics, clinical conditions (Model 1), concurrent use of any drug (Model 1) and therapeutic class (Model 2) with a risk of QT-prolongation (CQT-Rx). Patients enrolled in a health plan for 365 days before and five days after dispensing of azithromycin (episodes). Cardiac events included syncope, palpitations, ventricular arrhythmias, cardiac arrest as a primary diagnosis for hospitalization including death. For each model, a backward elimination of predictors using logistic regression was applied to identify predictors in 100 random samples of the training cohort. Predictors prevalent in >50% of the models were included in the final model. A score for the Assessment of Cardiac Risk with Azithromycin (ACRA) was generated using the training cohort then tested in the validation cohort. A cohort of 20,134,659 episodes with 0.03% cardiac events were included. Over 60% included females with mean age of 40.1±21.3 years. Age, sex, history of syncope, cardiac dysrhythmias, non-specific chest pain, and presence of a CQT-Rx were included as predictors for Model-1 (c-statistic = 0.68). For Model-2 (c-statistic = 0.64), predictors included age, sex, anti-arrhythmic agents, anti-emetics, antidepressants, loop diuretics, and ACE inhibitors. ACRA score is available online (bit.ly/ACRA_2020). The ACRA score may help identify patients who are at higher risk of cardiac events following treatment with azithromycin. Providers should assess the risk-benefit of using azithromycin and consider alternative antibiotics among high-risk patients.

Suggested Citation

  • Haridarshan Patel & Robert J DiDomenico & Katie J Suda & Glen T Schumock & Gregory S Calip & Todd A Lee, 2020. "Risk of cardiac events with azithromycin—A prediction model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-11, October.
  • Handle: RePEc:plo:pone00:0240379
    DOI: 10.1371/journal.pone.0240379
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240379
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0240379&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0240379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ewout W. Steyerberg & Marinus J. C. Eijkemans & Frank E. Harrell Jr & J. Dik F. Habbema, 2001. "Prognostic Modeling with Logistic Regression Analysis," Medical Decision Making, , vol. 21(1), pages 45-56, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    2. Beatrice Asenso Barnieh & Li Jia & Massimo Menenti & Min Jiang & Jie Zhou & Yelong Zeng & Ali Bennour, 2021. "Modeling the Underlying Drivers of Natural Vegetation Occurrence in West Africa with Binary Logistic Regression Method," Sustainability, MDPI, vol. 13(9), pages 1-37, April.
    3. Tri-Long Nguyen & Géraldine Leguelinel-Blache & Jean-Marie Kinowski & Clarisse Roux-Marson & Marion Rougier & Jessica Spence & Yannick Le Manach & Paul Landais, 2017. "Improving medication safety: Development and impact of a multivariate model-based strategy to target high-risk patients," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    4. Lisa Cherry & Darren Mollendor & Bill Eisenstein & Terri S. Hogue & Katharyn Peterman & John E. McCray, 2019. "Predicting Parcel-Scale Redevelopment Using Linear and Logistic Regression—the Berkeley Neighborhood Denver, Colorado Case Study," Sustainability, MDPI, vol. 11(7), pages 1-16, March.
    5. Luuk Wieske & Esther Witteveen & Camiel Verhamme & Daniela S Dettling-Ihnenfeldt & Marike van der Schaaf & Marcus J Schultz & Ivo N van Schaik & Janneke Horn, 2014. "Early Prediction of Intensive Care Unit–Acquired Weakness Using Easily Available Parameters: A Prospective Observational Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    6. Phung Khanh Lam & Dong Thi Hoai Tam & Nguyen Minh Dung & Nguyen Thi Hanh Tien & Nguyen Tan Thanh Kieu & Cameron Simmons & Jeremy Farrar & Bridget Wills & Marcel Wolbers, 2015. "A Prognostic Model for Development of Profound Shock among Children Presenting with Dengue Shock Syndrome," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.
    7. Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
    8. Fraser S Brown & Stella A Glasmacher & Patrick K A Kearns & Niall MacDougall & David Hunt & Peter Connick & Siddharthan Chandran, 2020. "Systematic review of prediction models in relapsing remitting multiple sclerosis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-13, May.
    9. Areti Kontogianni & Dimitris Damigos & Michail Skourtos & Christos Tourkolias & Eleanor Denny & Ibon Galarraga & Steffen Kallbekken & Edin Lakić, 2021. "Model Validity and Transferability Informing Behavioral Energy Policies," Energies, MDPI, vol. 14(11), pages 1-20, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0240379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.