IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0239922.html
   My bibliography  Save this article

Evolutionary model discovery of causal factors behind the socio-agricultural behavior of the Ancestral Pueblo

Author

Listed:
  • Chathika Gunaratne
  • Ivan Garibay

Abstract

Agent-based modeling of artificial societies allows for the validation and analysis of human-interpretable, causal explanations of human behavior that generate society-scale phenomena. However, parameter calibration is insufficient to conduct data-driven explorations that are adequate in evaluating the importance of causal factors that constitute agent rules that match real-world individual-scale generative behaviors. We introduce evolutionary model discovery, a framework that combines genetic programming and random forest regression to evaluate the importance of a set of causal factors hypothesized to affect the individual’s decision-making process. With evolutionary model discovery, we investigated the farm plot seeking behavior of the Ancestral Pueblo of the Long House Valley simulated in the Artificial Anasazi model. We evaluated the importance of causal factors unconsidered in the original model, which we hypothesized to have affected the decision-making process. Our findings, concur with other archaeological studies on the Ancestral Pueblo communities during the Pueblo II period, which indicate the existence of cross-village polities, hierarchical organization, and dependence on the viability of the agricultural niche. Contrary to the original Artificial Anasazi model, where closeness was the sole factor driving farm plot selection, selection of higher quality land, distancing from failed farm plots, and desire for social presence are found to be more important. Finally, models updated with farm selection strategies designed by incorporating these insights showed significant improvements in accuracy and robustness over the original Artificial Anasazi model.

Suggested Citation

  • Chathika Gunaratne & Ivan Garibay, 2020. "Evolutionary model discovery of causal factors behind the socio-agricultural behavior of the Ancestral Pueblo," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
  • Handle: RePEc:plo:pone00:0239922
    DOI: 10.1371/journal.pone.0239922
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239922
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239922&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0239922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simon DeDeo & David C Krakauer & Jessica C Flack, 2010. "Inductive Game Theory and the Dynamics of Animal Conflict," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-16, May.
    2. Marco A. Janssen, 2009. "Understanding Artificial Anasazi," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elizabeth A Hobson & Simon DeDeo, 2015. "Social Feedback and the Emergence of Rank in Animal Society," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-20, September.
    2. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    3. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    4. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    5. Huang, Shaoxu & Liu, Xuesong & Hu, Yuhan & Fu, Xiao, 2023. "The influence of aggressive behavior on cooperation evolution in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    6. Soumya Banerjee, 2017. "An Immune System Inspired Theory for Crime and Violence in Cities," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 15(2), pages 133-143.
    7. Chen, Shi & Bao, Forrest Sheng, 2015. "Linking body size and energetics with predation strategies: A game theoretic modeling framework," Ecological Modelling, Elsevier, vol. 316(C), pages 81-86.
    8. James D. A. Millington & John Wainwright, 2016. "Comparative Approaches for Innovation in Agent-Based Modelling of Landscape Change," Land, MDPI, vol. 5(2), pages 1-4, May.
    9. P. Schimit & B. Santos & C. Soares, 2015. "The evolution of cooperation with different fitness functions using probabilistic cellular automata," Computational Management Science, Springer, vol. 12(1), pages 35-43, January.
    10. Joaquim Carvalho & Rui L. Lopes & João Tojo, 2011. "Modeling Settlement Patterns In Real Territories," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 549-565.
    11. Carrella, Ernesto & Saul, Steven & Marshall, Kristin & Burgess, Matthew G. & Cabral, Reniel B. & Bailey, Richard M. & Dorsett, Chris & Drexler, Michael & Madsen, Jens Koed & Merkl, Andreas, 2020. "Simple Adaptive Rules Describe Fishing Behaviour Better than Perfect Rationality in the US West Coast Groundfish Fishery," Ecological Economics, Elsevier, vol. 169(C).
    12. Eleanor R Brush & David C Krakauer & Jessica C Flack, 2013. "A Family of Algorithms for Computing Consensus about Node State from Network Data," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-17, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0239922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.