Author
Listed:
- Mohsen Hesami
- Milad Alizadeh
- Roohangiz Naderi
- Masoud Tohidfar
Abstract
Optimizing the gene transformation factors can be considered as the first and foremost step in successful genetic engineering and genome editing studies. However, it is usually difficult to achieve an optimized gene transformation protocol due to the cost and time-consuming as well as the complexity of this process. Therefore, it is necessary to use a novel computational approach such as machine learning models for analyzing gene transformation data. In the current study, three individual machine learning models including Multi-Layer Perceptron (MLP), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Radial Basis Function (RBF) were developed for forecasting Agrobacterium-mediated gene transformation in chrysanthemum based on eleven input variables including Agrobacterium strain, optical density (OD), co-culture period (CCP), and different antibiotics including kanamycin (K), vancomycin (VA), cefotaxime (CF), hygromycin (H), carbenicillin (CA), geneticin (G), ticarcillin (TI), and paromomycin (P). Consequently, best-obtained results were used in the fusion process by bagging method. Results showed that ensemble model with the highest R2 (0.83) had superb performance in comparison with all other individual models (MLP:063, RBF:0.69, and ANFIS: 0.74) in the validation set. Also, ensemble model was linked to Fruit fly optimization algorithm (FOA) for optimizing gene transformation, and the results showed that the maximum gene transformation efficiency (37.54%) can be achieved from EHA105 strain with 0.9 OD600, for 3.8 days CCP, 46.43 mg/l P, 9.54 mg/l K, 18.62 mg/l H, and 4.79 mg/l G as selection antibiotics and 109.74 μg/ml VA, 287.63 μg/ml CF, 334.07 μg/ml CA and 87.36 μg/ml TI as antibiotics in the selection medium. Moreover, sensitivity analysis demonstrated that input variables have a different degree of importance in gene transformation system in the order of Agrobacterium strain > CCP > K > CF > VA > P > OD > CA > H > TI > G. Generally, the developed hybrid model in this study (ensemble model-FOA) can be employed as an accurate and reliable approach in future genetic engineering and genome editing studies.
Suggested Citation
Mohsen Hesami & Milad Alizadeh & Roohangiz Naderi & Masoud Tohidfar, 2020.
"Forecasting and optimizing Agrobacterium-mediated genetic transformation via ensemble model- fruit fly optimization algorithm: A data mining approach using chrysanthemum databases,"
PLOS ONE, Public Library of Science, vol. 15(9), pages 1-16, September.
Handle:
RePEc:plo:pone00:0239901
DOI: 10.1371/journal.pone.0239901
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0239901. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.