IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235187.html
   My bibliography  Save this article

New machine learning method for image-based diagnosis of COVID-19

Author

Listed:
  • Mohamed Abd Elaziz
  • Khalid M Hosny
  • Ahmad Salah
  • Mohamed M Darwish
  • Songfeng Lu
  • Ahmed T Sahlol

Abstract

COVID-19 is a worldwide epidemic, as announced by the World Health Organization (WHO) in March 2020. Machine learning (ML) methods can play vital roles in identifying COVID-19 patients by visually analyzing their chest x-ray images. In this paper, a new ML-method proposed to classify the chest x-ray images into two classes, COVID-19 patient or non-COVID-19 person. The features extracted from the chest x-ray images using new Fractional Multichannel Exponent Moments (FrMEMs). A parallel multi-core computational framework utilized to accelerate the computational process. Then, a modified Manta-Ray Foraging Optimization based on differential evolution used to select the most significant features. The proposed method evaluated using two COVID-19 x-ray datasets. The proposed method achieved accuracy rates of 96.09% and 98.09% for the first and second datasets, respectively.

Suggested Citation

  • Mohamed Abd Elaziz & Khalid M Hosny & Ahmad Salah & Mohamed M Darwish & Songfeng Lu & Ahmed T Sahlol, 2020. "New machine learning method for image-based diagnosis of COVID-19," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.
  • Handle: RePEc:plo:pone00:0235187
    DOI: 10.1371/journal.pone.0235187
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235187
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235187&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235187?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiang-yang & Li, Wei-yi & Yang, Hong-ying & Wang, Pei & Li, Yong-wei, 2015. "Quaternion polar complex exponential transform for invariant color image description," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 951-967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saqib Ali Nawaz & Jingbing Li & Uzair Aslam Bhatti & Sibghat Ullah Bazai & Asmat Zafar & Mughair Aslam Bhatti & Anum Mehmood & Qurat ul Ain & Muhammad Usman Shoukat, 2021. "A hybrid approach to forecast the COVID-19 epidemic trend," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-16, October.
    2. Yingying Liao & Weiguo Zhao & Liying Wang, 2021. "Improved Manta Ray Foraging Optimization for Parameters Identification of Magnetorheological Dampers," Mathematics, MDPI, vol. 9(18), pages 1-38, September.
    3. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Mario A Quiroz-Juárez & Armando Torres-Gómez & Irma Hoyo-Ulloa & Roberto de J León-Montiel & Alfred B U’Ren, 2021. "Identification of high-risk COVID-19 patients using machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-21, September.
    5. Mohamed Abd Elaziz & Laith Abualigah & Dalia Yousri & Diego Oliva & Mohammed A. A. Al-Qaness & Mohammad H. Nadimi-Shahraki & Ahmed A. Ewees & Songfeng Lu & Rehab Ali Ibrahim, 2021. "Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection," Mathematics, MDPI, vol. 9(21), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosny, Khalid M. & Darwish, Mohamed M., 2022. "Novel quaternion discrete shifted Gegenbauer moments of fractional-orders for color image analysis," Applied Mathematics and Computation, Elsevier, vol. 421(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.