IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235147.html
   My bibliography  Save this article

Feature sensitivity criterion-based sampling strategy from the Optimization based on Phylogram Analysis (Fs-OPA) and Cox regression applied to mental disorder datasets

Author

Listed:
  • Fatemeh Gholi Zadeh Kharrat
  • Newton Shydeo Brandão Miyoshi
  • Juliana Cobre
  • João Mazzoncini De Azevedo-Marques
  • Paulo Mazzoncini de Azevedo-Marques
  • Alexandre Cláudio Botazzo Delbem

Abstract

Digital datasets in several health care facilities, as hospitals and prehospital services, accumulated data from thousands of patients for more than a decade. In general, there is no local team with enough experts with the required different skills capable of analyzing them in entirety. The integration of those abilities usually demands a relatively long-period and is cost. Considering that scenario, this paper proposes a new Feature Sensitivity technique that can automatically deal with a large dataset. It uses a criterion-based sampling strategy from the Optimization based on Phylogram Analysis. Called FS-opa, the new approach seems proper for dealing with any types of raw data from health centers and manipulate their entire datasets. Besides, FS-opa can find the principal features for the construction of inference models without depending on expert knowledge of the problem domain. The selected features can be combined with usual statistical or machine learning methods to perform predictions. The new method can mine entire datasets from scratch. FS-opa was evaluated using a relatively large dataset from electronic health records of mental disorder prehospital services in Brazil. Cox’s approach was integrated to FS-opa to generate survival analysis models related to the length of stay (LOS) in hospitals, assuming that it is a relevant aspect that can benefit estimates of the efficiency of hospitals and the quality of patient treatments. Since FS-opa can work with raw datasets, no knowledge from the problem domain was used to obtain the preliminary prediction models found. Results show that FS-opa succeeded in performing a feature sensitivity analysis using only the raw data available. In this way, FS-opa can find the principal features without bias of an inference model, since the proposed method does not use it. Moreover, the experiments show that FS-opa can provide models with a useful trade-off according to their representativeness and parsimony. It can benefit further analyses by experts since they can focus on aspects that benefit problem modeling.

Suggested Citation

  • Fatemeh Gholi Zadeh Kharrat & Newton Shydeo Brandão Miyoshi & Juliana Cobre & João Mazzoncini De Azevedo-Marques & Paulo Mazzoncini de Azevedo-Marques & Alexandre Cláudio Botazzo Delbem, 2020. "Feature sensitivity criterion-based sampling strategy from the Optimization based on Phylogram Analysis (Fs-OPA) and Cox regression applied to mental disorder datasets," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
  • Handle: RePEc:plo:pone00:0235147
    DOI: 10.1371/journal.pone.0235147
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235147
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235147&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Hainan & Xie, Yue & Jiang, Bowen & Tang, Jiafu, 2024. "When outpatient appointment meets online consultation: A joint scheduling optimization framework," Omega, Elsevier, vol. 127(C).
    2. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    3. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    4. Pan, Xingwei & Geng, Na & Xie, Xiaolan, 2021. "Appointment scheduling and real-time sequencing strategies for patient unpunctuality," European Journal of Operational Research, Elsevier, vol. 295(1), pages 246-260.
    5. Sudhanshu Joshi & Manu Sharma, 2022. "A Literature Survey on Vaccine Supply Chain Management Amidst COVID-19: Literature Developments, Future Directions and Open Challenges for Public Health," World, MDPI, vol. 3(4), pages 1-28, October.
    6. Wenjuan Fan & Yi Wang & Tongzhu Liu & Guixian Tong, 2020. "A patient flow scheduling problem in ophthalmology clinic solved by the hybrid EDA–VNS algorithm," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 547-580, February.
    7. Aditya Shetty & Harry Groenevelt & Vera Tilson, 2023. "Intraday dynamic rescheduling under patient no-shows," Health Care Management Science, Springer, vol. 26(3), pages 583-598, September.
    8. Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
    9. Shahab Sadri & Arsalan Paleshi & Lihui Bai & Monica Gentili, 2024. "A Simulation Study for a Safe Reopening and Operation of the Trager Institute Optimal Aging Clinic During the COVID-19 Pandemic," Interfaces, INFORMS, vol. 54(2), pages 188-204, March.
    10. Isabel Kaluza & Guido Voigt & Knut Haase & Antonia Dietze, 2024. "Control of Online-Appointment Systems When the Booking Status Signals Quality of Service," Schmalenbach Journal of Business Research, Springer, vol. 76(3), pages 397-432, September.
    11. Li Luo & Ying Zhou & Bernard T. Han & Jialing Li, 2019. "An optimization model to determine appointment scheduling window for an outpatient clinic with patient no-shows," Health Care Management Science, Springer, vol. 22(1), pages 68-84, March.
    12. Esmaeil Keyvanshokooh & Pooyan Kazemian & Mohammad Fattahi & Mark P. Van Oyen, 2022. "Coordinated and Priority‐Based Surgical Care: An Integrated Distributionally Robust Stochastic Optimization Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1510-1535, April.
    13. Andrés Miniguano-Trujillo & Fernanda Salazar & Ramiro Torres & Patricio Arias & Koraima Sotomayor, 2021. "An integer programming model to assign patients based on mental health impact for tele-psychotherapy intervention during the Covid–19 emergency," Health Care Management Science, Springer, vol. 24(2), pages 286-304, June.
    14. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.
    15. Creemers, Stefan & Lambrecht, Marc R. & Beliën, Jeroen & Van den Broeke, Maud, 2021. "Evaluation of appointment scheduling rules: A multi-performance measurement approach," Omega, Elsevier, vol. 100(C).
    16. Eduardo Pérez, 2022. "An Appointment Planning Algorithm for Reducing Patient Check-In Waiting Times in Multispecialty Outpatient Clinics," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    17. Adam Diamant, 2021. "Dynamic multistage scheduling for patient-centered care plans," Health Care Management Science, Springer, vol. 24(4), pages 827-844, December.
    18. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    19. Tito Homem-de-Mello & Qingxia Kong & Rodrigo Godoy-Barba, 2022. "A Simulation Optimization Approach for the Appointment Scheduling Problem with Decision-Dependent Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2845-2865, September.
    20. Yifei Sun & Usha Nandini Raghavan & Vikrant Vaze & Christopher S Hall & Patricia Doyle & Stacey Sullivan Richard & Christoph Wald, 2021. "Stochastic programming for outpatient scheduling with flexible inpatient exam accommodation," Health Care Management Science, Springer, vol. 24(3), pages 460-481, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.