IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0231149.html
   My bibliography  Save this article

Comparing statistical analyses to estimate thresholds in ecotoxicology

Author

Listed:
  • Marcos Krull

Abstract

Different methods are used in ecotoxicology to estimate thresholds in survival data. This paper uses Monte Carlo simulations to evaluate the accuracy of three methods (maximum likelihood (MLE) and Markov Chain Monte Carlo estimates (Bayesian) of the no-effect concentration (NEC) model and Piecewise regression) in estimating true and apparent thresholds in survival experiments with datasets having different slopes, background mortalities, and experimental designs. Datasets were generated with models that include a threshold parameter (NEC) or not (log-logistic). Accuracy was estimated using root-mean square errors (RMSEs), and RMSE ratios were used to estimate the relative improvement in accuracy by each design and method. All methods had poor performances in shallow and intermediate curves, and accuracy increased with the slope of the curve. The EC5 was generally the most accurate method to estimate true and apparent thresholds, except for steep curves with a true threshold. In that case, the EC5 underestimated the threshold, and MLE and Bayesian estimates were more accurate. In most cases, information criteria weights did not provide strong evidence in support of the true model, suggesting that identifying the true model is a difficult task. Piecewise regression was the only method where the information criteria weights had high support for the threshold model; however, the rate of spurious threshold model selection was also high. Even though thresholds are an attractive concept from a regulatory and practical point of view, threshold estimates, under the experimental conditions evaluated in this work, should be carefully used in survival analysis or when there are any biological reasons to support the existence of a threshold.

Suggested Citation

  • Marcos Krull, 2020. "Comparing statistical analyses to estimate thresholds in ecotoxicology," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0231149
    DOI: 10.1371/journal.pone.0231149
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231149
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0231149&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0231149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Killick, Rebecca & Eckley, Idris A., 2014. "changepoint: An R Package for Changepoint Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i03).
    2. Baas, J. & Jager, T. & Kooijman, S.A.L.M., 2009. "Estimation of no effect concentrations from exposure experiments when values scatter among individuals," Ecological Modelling, Elsevier, vol. 220(3), pages 411-418.
    3. Ritz, Christian & Streibig, Jens C., 2005. "Bioassay Analysis Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i05).
    4. S. A. L. M. Kooijman & J. J. M. Bedaux & W. Slob, 1996. "No‐Effect Concentration as a Basis for Ecological Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 16(4), pages 445-447, August.
    5. Kampstra, Peter, 2008. "Beanplot: A Boxplot Alternative for Visual Comparison of Distributions," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(c01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floriane Larras & Agnès Bouchez & Frédéric Rimet & Bernard Montuelle, 2012. "Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-9, August.
    2. Petter Arnesen & Odd A. Hjelkrem, 2018. "An Estimator for Traffic Breakdown Probability Based on Classification of Transitional Breakdown Events," Transportation Science, INFORMS, vol. 52(3), pages 593-602, June.
    3. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    4. Malte Willmes & Katherine M Ransom & Levi S Lewis & Christian T Denney & Justin J G Glessner & James A Hobbs, 2018. "IsoFishR: An application for reproducible data reduction and analysis of strontium isotope ratios (87Sr/86Sr) obtained via laser-ablation MC-ICP-MS," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-15, September.
    5. Euro Pannacci & Daniele Del Buono & Maria Luce Bartucca & Luigi Nasini & Primo Proietti & Francesco Tei, 2020. "Herbicide Uptake and Regrowth Ability of Tall Fescue and Orchardgrass in S-Metolachlor-Contaminated Leachates from Sand Pot Experiment," Agriculture, MDPI, vol. 10(10), pages 1-10, October.
    6. Kahm, Matthias & Hasenbrink, Guido & Lichtenberg-Fraté, Hella & Ludwig, Jost & Kschischo, Maik, 2010. "grofit: Fitting Biological Growth Curves with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i07).
    7. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    8. Hector Sanz & John J Aponte & Jaroslaw Harezlak & Yan Dong & Aintzane Ayestaran & Augusto Nhabomba & Maxmillian Mpina & Obiang Régis Maurin & Núria Díez-Padrisa & Ruth Aguilar & Gemma Moncunill & Agna, 2017. "drLumi: An open-source package to manage data, calibrate, and conduct quality control of multiplex bead-based immunoassays data analysis," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-18, November.
    9. Camilo Guzmán & Manish Bagga & Amanpreet Kaur & Jukka Westermarck & Daniel Abankwa, 2014. "ColonyArea: An ImageJ Plugin to Automatically Quantify Colony Formation in Clonogenic Assays," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.
    10. Tasadduq Imam, 2021. "Model selection for one‐day‐ahead AUD/USD, AUD/EUR forecasts," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1808-1824, April.
    11. Y. Fong & J. Wakefield & S. De Rosa & N. Frahm, 2012. "A Robust Bayesian Random Effects Model for Nonlinear Calibration Problems," Biometrics, The International Biometric Society, vol. 68(4), pages 1103-1112, December.
    12. Raputsoane, Leroi, 2018. "Temporal homogeneity between financial stress and the economic cycle," MPRA Paper 91119, University Library of Munich, Germany.
    13. Markus Demary, 2017. "Yield curve responses to market sentiments and monetary policy," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 309-344, July.
    14. Miroslav Sirota & Marie Juanchich, 2015. "A direct and comprehensive test of two postulates of politeness theory applied to uncertainty communication," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 10(3), pages 232-240, May.
    15. Chanseok Park & Min Wang, 2024. "Parameter Estimation of Birnbaum-Saunders Distribution under Competing Risks Using the Quantile Variant of the Expectation-Maximization Algorithm," Mathematics, MDPI, vol. 12(11), pages 1-17, June.
    16. Manuel Mendoza-Carranza & Elisabet Ejarque & Leopold A J Nagelkerke, 2018. "Disentangling the complexity of tropical small-scale fisheries dynamics using supervised Self-Organizing Maps," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    17. Hui Zhang & Minna Väliranta & Graeme T. Swindles & Marco A. Aquino-López & Donal Mullan & Ning Tan & Matthew Amesbury & Kirill V. Babeshko & Kunshan Bao & Anatoly Bobrov & Viktor Chernyshov & Marissa , 2022. "Recent climate change has driven divergent hydrological shifts in high-latitude peatlands," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    18. Barrios Ramos, Iris & Espinoza Tenorio, Alejandro & Mesa Jurado, M. Azahara & Tovilla Hernández, Cristian & Mendoza Carranza, Manuel, 2021. "Percepción social de la salinización del agua para uso doméstico en Puerto Madero, Chiapas, México," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 21(01), June.
    19. Jens Peter Andersen & Björn Hammarfelt, 2011. "Price revisited: on the growth of dissertations in eight research fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(2), pages 371-383, August.
    20. Subhashis Chatterjee & Ankur Shukla, 2016. "Change point–based software reliability model under imperfect debugging with revised concept of fault dependency," Journal of Risk and Reliability, , vol. 230(6), pages 579-597, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.