IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0229502.html
   My bibliography  Save this article

A background correction method to compensate illumination variation in hyperspectral imaging

Author

Listed:
  • Jonghee Yoon
  • Alexandru Grigoroiu
  • Sarah E Bohndiek

Abstract

Hyperspectral imaging (HSI) can measure both spatial (morphological) and spectral (biochemical) information from biological tissues. While HSI appears promising for biomedical applications, interpretation of hyperspectral images can be challenging when data is acquired in complex biological environments. Variations in surface topology or optical power distribution at the sample, encountered for example during endoscopy, can lead to errors in post-processing of the HSI data, compromising disease diagnostic capabilities. Here, we propose a background correction method to compensate for such variations, which estimates the optical properties of illumination at the target based on the normalised spectral profile of the light source and the measured HSI intensity values at a fixed wavelength where the absorption characteristics of the sample are relatively low (in this case, 800 nm). We demonstrate the feasibility of the proposed method by imaging blood samples, tissue-mimicking phantoms, and ex vivo chicken tissue. Moreover, using synthetic HSI data composed from experimentally measured spectra, we show the proposed method would improve statistical analysis of HSI data. The proposed method could help the implementation of HSI techniques in practical clinical applications, where controlling the illumination pattern and power is difficult.

Suggested Citation

  • Jonghee Yoon & Alexandru Grigoroiu & Sarah E Bohndiek, 2020. "A background correction method to compensate illumination variation in hyperspectral imaging," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-21, March.
  • Handle: RePEc:plo:pone00:0229502
    DOI: 10.1371/journal.pone.0229502
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229502
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0229502&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0229502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonghee Yoon & James Joseph & Dale J. Waterhouse & A. Siri Luthman & George S. D. Gordon & Massimiliano Pietro & Wladyslaw Januszewicz & Rebecca C. Fitzgerald & Sarah E. Bohndiek, 2019. "A clinically translatable hyperspectral endoscopy (HySE) system for imaging the gastrointestinal tract," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Wiebke Jahr & Benjamin Schmid & Christopher Schmied & Florian O. Fahrbach & Jan Huisken, 2015. "Hyperspectral light sheet microscopy," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gareth O. S. Williams & Elvira Williams & Neil Finlayson & Ahmet T. Erdogan & Qiang Wang & Susan Fernandes & Ahsan R. Akram & Kev Dhaliwal & Robert K. Henderson & John M. Girkin & Mark Bradley, 2021. "Full spectrum fluorescence lifetime imaging with 0.5 nm spectral and 50 ps temporal resolution," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Xiaomeng Han & Xiaotang Lu & Peter H. Li & Shuohong Wang & Richard Schalek & Yaron Meirovitch & Zudi Lin & Jason Adhinarta & Karl D. Murray & Leah M. MacNiven & Daniel R. Berger & Yuelong Wu & Tao Fan, 2024. "Multiplexed volumetric CLEM enabled by scFvs provides insights into the cytology of cerebellar cortex," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0229502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.