IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0227495.html
   My bibliography  Save this article

An information-based approach to handle various types of uncertainty in fuzzy bodies of evidence

Author

Listed:
  • Atiye Sarabi-Jamab
  • Babak N Araabi

Abstract

Fuzzy evidence theory, or fuzzy Dempster-Shafer Theory captures all three types of uncertainty, i.e. fuzziness, non-specificity, and conflict, which are usually contained in a piece of information within one framework. Therefore, it is known as one of the most promising approaches for practical applications. Quantifying the difference between two fuzzy bodies of evidence becomes important when this framework is used in applications. This work is motivated by the fact that while dissimilarity measures have been surveyed in the fields of evidence theory and fuzzy set theory, no comprehensive survey is yet available for fuzzy evidence theory. We proposed a modification to a set of the most discriminative dissimilarity measures (smDDM)-as the minimum set of dissimilarity with the maximal power of discrimination in evidence theory- to handle all types of uncertainty in fuzzy evidence theory. The generalized smDDM (FsmDDM) together with the one previously introduced as fuzzy measures make up a set of measures that is comprehensive enough to collectively address all aspects of information conveyed by the fuzzy bodies of evidence. Experimental results are presented to validate the method and to show the efficiency of the proposed method.

Suggested Citation

  • Atiye Sarabi-Jamab & Babak N Araabi, 2020. "An information-based approach to handle various types of uncertainty in fuzzy bodies of evidence," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-13, January.
  • Handle: RePEc:plo:pone00:0227495
    DOI: 10.1371/journal.pone.0227495
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227495
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0227495&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0227495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liming Gou & Jian Zhang & Naiwen Li & Zongshui Wang & Jindong Chen & Lin Qi, 2022. "Weighted assignment fusion algorithm of evidence conflict based on Euclidean distance and weighting strategy, and application in the wind turbine system," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0227495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.