IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0227160.html
   My bibliography  Save this article

The drivers of West Nile virus human illness in the Chicago, Illinois, USA area: Fine scale dynamic effects of weather, mosquito infection, social, and biological conditions

Author

Listed:
  • Surendra Karki
  • William M Brown
  • John Uelmen
  • Marilyn O’Hara Ruiz
  • Rebecca Lee Smith

Abstract

West Nile virus (WNV) has consistently been reported to be associated with human cases of illness in the region near Chicago, Illinois. However, the number of reported cases of human illness varies across years, with intermittent outbreaks. Several dynamic factors, including temperature, rainfall, and infection status of vector mosquito populations, are responsible for much of these observed variations. However, local landscape structure and human demographic characteristics also play a key role. The geographic and temporal scales used to analyze such complex data affect the observed associations. Here, we used spatial and statistical modeling approaches to investigate the factors that drive the outcome of WNV human illness on fine temporal and spatial scales. Our approach included multi-level modeling of long-term weekly data from 2005 to 2016, with weekly measures of mosquito infection, human illness and weather combined with more stable landscape and demographic factors on the geographical scale of 1000m hexagons. We found that hot weather conditions, warm winters, and higher MIR in earlier weeks increased the probability of an area of having a WNV human case. Higher population and the proportion of urban light intensity in an area also increased the probability of observing a WNV human case. A higher proportion of open water sources, percentage of grass land, deciduous forests, and housing built post 1990 decreased the probability of having a WNV case. Additionally, we found that cumulative positive mosquito pools up to 31 weeks can strongly predict the total annual human WNV cases in the Chicago region. This study helped us to improve our understanding of the fine-scale drivers of spatiotemporal variability of human WNV cases.

Suggested Citation

  • Surendra Karki & William M Brown & John Uelmen & Marilyn O’Hara Ruiz & Rebecca Lee Smith, 2020. "The drivers of West Nile virus human illness in the Chicago, Illinois, USA area: Fine scale dynamic effects of weather, mosquito infection, social, and biological conditions," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0227160
    DOI: 10.1371/journal.pone.0227160
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227160
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0227160&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0227160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George Valiakos & Konstantinos Papaspyropoulos & Alexios Giannakopoulos & Periklis Birtsas & Sotirios Tsiodras & Michael R Hutchings & Vassiliki Spyrou & Danai Pervanidou & Labrini V Athanasiou & Niko, 2014. "Use of Wild Bird Surveillance, Human Case Data and GIS Spatial Analysis for Predicting Spatial Distributions of West Nile Virus in Greece," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-8, May.
    2. Birch, Colin P.D. & Oom, Sander P. & Beecham, Jonathan A., 2007. "Rectangular and hexagonal grids used for observation, experiment and simulation in ecology," Ecological Modelling, Elsevier, vol. 206(3), pages 347-359.
    3. Nicholas B. DeFelice & Eliza Little & Scott R. Campbell & Jeffrey Shaman, 2017. "Ensemble forecast of human West Nile virus cases and mosquito infection rates," Nature Communications, Nature, vol. 8(1), pages 1-6, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    2. Kim, Suji & Lee, Sujin & Ko, Eunjeong & Jang, Kitae & Yeo, Jiho, 2021. "Changes in car and bus usage amid the COVID-19 pandemic: Relationship with land use and land price," Journal of Transport Geography, Elsevier, vol. 96(C).
    3. Pacheco de Castro Flores Ribeiro, Paulo & Osório de Barros de Lima e Santos, José Manuel & Prudêncio Rafael Canadas, Maria João & Contente de Vinha Novais, Ana Maria & Ribeiro Ferraria Moreira, Franci, 2021. "Explaining farming systems spatial patterns: A farm-level choice model based on socioeconomic and biophysical drivers," Agricultural Systems, Elsevier, vol. 191(C).
    4. Francesca Peroni & Guglielmo Pristeri & Daniele Codato & Salvatore Eugenio Pappalardo & Massimo De Marchi, 2019. "Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    5. Jue Wang & Mei-Po Kwan & Yanwei Chai, 2018. "An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago," IJERPH, MDPI, vol. 15(4), pages 1-24, April.
    6. Oliveira, Renata Lúcia Magalhães de & Dablanc, Laetitia & Schorung, Matthieu, 2022. "Changes in warehouse spatial patterns and rental prices: Are they related? Exploring the case of US metropolitan areas," Journal of Transport Geography, Elsevier, vol. 104(C).
    7. Sungsoo Yoon & Youngjoo Moon & Jinah Jeong & Chan-Ryul Park & Wanmo Kang, 2021. "A Network-Based Approach for Reducing Pedestrian Exposure to PM 2.5 Induced by Road Traffic in Seoul," Land, MDPI, vol. 10(10), pages 1-14, October.
    8. Christopher T. Emrich & Yao Zhou & Sanam K. Aksha & Herbert E. Longenecker, 2022. "Creating a Nationwide Composite Hazard Index Using Empirically Based Threat Assessment Approaches Applied to Open Geospatial Data," Sustainability, MDPI, vol. 14(5), pages 1-25, February.
    9. Boura, Georgia & Ferguson, Neil S., 2024. "Incorporating geographic interdependencies into the resilience assessment of multimodal public transport networks," Journal of Transport Geography, Elsevier, vol. 118(C).
    10. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    11. Sui Zhang & Minghao Wang & Zhao Yang & Baolei Zhang, 2021. "A Novel Predictor for Micro-Scale COVID-19 Risk Modeling: An Empirical Study from a Spatiotemporal Perspective," IJERPH, MDPI, vol. 18(24), pages 1-16, December.
    12. Ryzhkov, Alexander & Sarzhan, Yuliya, 2020. "Market initiative and central planning: A study of the Moscow bus network," Research in Transportation Economics, Elsevier, vol. 83(C).
    13. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    14. Rafael Hologa & Nils Riach, 2020. "Approaching Bike Hazards via Crowdsourcing of Volunteered Geographic Information," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    15. Avgar, Tal & Deardon, Rob & Fryxell, John M., 2013. "An empirically parameterized individual based model of animal movement, perception, and memory," Ecological Modelling, Elsevier, vol. 251(C), pages 158-172.
    16. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    17. Nogueira Terra, Talita & Ferreira dos Santos, Rozely, 2012. "Measuring cumulative effects in a fragmented landscape," Ecological Modelling, Elsevier, vol. 228(C), pages 89-95.
    18. Burdziej Jan, 2019. "Using hexagonal grids and network analysis for spatial accessibility assessment in urban environments – a case study of public amenities in Toruń," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 23(2), pages 99-110, June.
    19. Agnė Jasinavičiūtė & Darijus Veteikis, 2022. "Assessing Landscape Instability through Land-Cover Change Based on the Hemeroby Index (Lithuanian Example)," Land, MDPI, vol. 11(7), pages 1-18, July.
    20. Alessio Arleo & Christos Tsigkanos & Chao Jia & Roger A. Leite & Ilir Murturi & Manfred Klaffenboeck & Schahram Dustdar & Michael Wimmer & Silvia Miksch & Johannes Sorger, 2019. "Sabrina: Modeling and Visualization of Economy Data with Incremental Domain Knowledge," Papers 1908.07479, arXiv.org, revised Jan 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0227160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.