IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225961.html
   My bibliography  Save this article

Helicobacter pylori antibody and pepsinogen testing for predicting gastric microbiome abundance

Author

Listed:
  • Saemi Choi
  • Jae Gon Lee
  • A-reum Lee
  • Chang Soo Eun
  • Dong Soo Han
  • Chan Hyuk Park

Abstract

Background: Although the high-throughput sequencing technique is useful for evaluating gastric microbiome, it is difficult to use clinically. We aimed to develop a predictive model for gastric microbiome based on serologic testing. Methods: This study was designed to analyze sequencing data obtained from the Hanyang University Gastric Microbiome Cohort, which was established initially to investigate gastric microbial composition according to the intragastric environment. We evaluated the relationship between the relative abundance of potential gastric cancer-associated bacteria (nitrosating/nitrate-reducing bacteria or type IV secretion system [T4SS] protein gene-contributing bacteria) and serologic markers (IgG anti-Helicobacter pylori [HP] antibody or pepsinogen [PG] levels). Results: We included 57 and 26 participants without and with HP infection, respectively. The relative abundance of nitrosating/nitrate-reducing bacteria was 4.9% and 3.6% in the HP-negative and HP-positive groups, respectively, while that of T4SS protein gene-contributing bacteria was 20.5% and 6.5% in the HP-negative and HP-positive groups, respectively. The relative abundance of both nitrosating/nitrate-reducing bacteria and T4SS protein gene-contributing bacteria increased exponentially as PG levels decreased. Advanced age (only for nitrosating/nitrate-reducing bacteria), a negative result of IgG anti-HP antibody, low PG levels, and high Charlson comorbidity index were associated with a high relative abundance of nitrosating/nitrate-reducing bacteria and T4SS protein gene-contributing bacteria. The adjusted coefficient of determination (R2) was 53.7% and 70.0% in the model for nitrosating/nitrate-reducing bacteria and T4SS protein gene-contributing bacteria, respectively. Conclusion: Not only the negative results of IgG anti-HP antibody but also low PG levels were associated with a high abundance of nitrosating/nitrate-reducing bacteria and T4SS protein gene-contributing bacteria.

Suggested Citation

  • Saemi Choi & Jae Gon Lee & A-reum Lee & Chang Soo Eun & Dong Soo Han & Chan Hyuk Park, 2019. "Helicobacter pylori antibody and pepsinogen testing for predicting gastric microbiome abundance," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-14, December.
  • Handle: RePEc:plo:pone00:0225961
    DOI: 10.1371/journal.pone.0225961
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225961
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225961&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225961?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. D. A. Williams, 1987. "Generalized Linear Model Diagnostics Using the Deviance and Single Case Deletions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(2), pages 181-191, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Preisser, John S. & Garcia, Daniel I., 2005. "Alternative computational formulae for generalized linear model diagnostics: identifying influential observations with SAS software," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 755-764, April.
    2. M. Revan Özkale & Stanley Lemeshow & Rodney Sturdivant, 2018. "Logistic regression diagnostics in ridge regression," Computational Statistics, Springer, vol. 33(2), pages 563-593, June.
    3. Rubén Moreno-Opo & Mariana Fernández-Olalla & Antoni Margalida & Ángel Arredondo & Francisco Guil, 2012. "Effect of Methodological and Ecological Approaches on Heterogeneity of Nest-Site Selection of a Long-Lived Vulture," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    4. Martha Misas A. & Juan Carlos Parra A. & Enrique López E., 2011. "Heterogeneidad en la fijación de precios en Colombia: análisis de sus determinantes a partir de modelos de conteo," Vniversitas Económica, Universidad Javeriana - Bogotá, vol. 0(0), pages 1-40, January.
    5. Monfort, Abel & Villagra, Nuria & Sánchez, Joaquín, 2021. "Economic impact of corporate foundations: An event analysis approach," Journal of Business Research, Elsevier, vol. 122(C), pages 159-170.
    6. Li, Zaixing & Xu, Wangli & Zhu, Lixing, 2009. "Influence diagnostics and outlier tests for varying coefficient mixed models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2002-2017, October.
    7. Boehm, Martin, 2008. "Determining the impact of internet channel use on a customer's lifetime," Journal of Interactive Marketing, Elsevier, vol. 22(3), pages 2-22.
    8. Cordeiro, Gauss M. & Simas, Alexandre B., 2009. "The distribution of Pearson residuals in generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3397-3411, July.
    9. José Osvaldo De Sordi & Marco Antonio Conejero & Manuel Meireles, 2016. "Bibliometric indicators in the context of regional repositories: proposing the D-index," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 235-258, April.
    10. Shiyu Wang & Houping Xiao & Allan Cohen, 2021. "Adaptive Weight Estimation of Latent Ability: Application to Computerized Adaptive Testing With Response Revision," Journal of Educational and Behavioral Statistics, , vol. 46(5), pages 560-591, October.
    11. Juliana Scudilio & Gustavo H. A. Pereira, 2020. "Adjusted quantile residual for generalized linear models," Computational Statistics, Springer, vol. 35(1), pages 399-421, March.
    12. Johan Koskinen & Peng Wang & Garry Robins & Philippa Pattison, 2018. "Outliers and Influential Observations in Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 83(4), pages 809-830, December.
    13. Xie, Xian-Jin & Pendergast, Jane & Clarke, William, 2008. "Increasing the power: A practical approach to goodness-of-fit test for logistic regression models with continuous predictors," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2703-2713, January.
    14. Munoz-Garcia, J. & Munoz-Pichardo, J.M. & Pardo, L., 2006. "Cressie and Read power-divergences as influence measures for logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3199-3221, July.
    15. Nyangoma, S.O. & Fung, W.-K. & Jansen, R.C., 2006. "Identifying influential multinomial observations by perturbation," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2799-2821, June.
    16. Colin Cameron, A. & Windmeijer, Frank A. G., 1997. "An R-squared measure of goodness of fit for some common nonlinear regression models," Journal of Econometrics, Elsevier, vol. 77(2), pages 329-342, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.