IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225716.html
   My bibliography  Save this article

Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: A population based cohort study

Author

Listed:
  • Anna Sandström
  • Jonathan M Snowden
  • Jonas Höijer
  • Matteo Bottai
  • Anna-Karin Wikström

Abstract

Objective: To evaluate the capacity of multivariable prediction of preeclampsia during pregnancy, based on detailed routinely collected early pregnancy data in nulliparous women. Design and setting: A population-based cohort study of 62 562 pregnancies of nulliparous women with deliveries 2008–13 in the Stockholm-Gotland Counties in Sweden. Methods: Maternal social, reproductive and medical history and medical examinations (including mean arterial pressure, proteinuria, hemoglobin and capillary glucose levels) routinely collected at the first visit in antenatal care, constitute the predictive variables. Predictive models for preeclampsia were created by three methods; logistic regression models using 1) pre-specified variables (similar to the Fetal Medicine Foundation model including maternal factors and mean arterial pressure), 2) backward selection starting from the full suite of variables, and 3) a Random forest model using the same candidate variables. The performance of the British National Institute for Health and Care Excellence (NICE) binary risk classification guidelines for preeclampsia was also evaluated. The outcome measures were diagnosis of preeclampsia with delivery

Suggested Citation

  • Anna Sandström & Jonathan M Snowden & Jonas Höijer & Matteo Bottai & Anna-Karin Wikström, 2019. "Clinical risk assessment in early pregnancy for preeclampsia in nulliparous women: A population based cohort study," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-16, November.
  • Handle: RePEc:plo:pone00:0225716
    DOI: 10.1371/journal.pone.0225716
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225716
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225716&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    2. repec:aph:ajpbhl:10.2105/ajph.2017.303711_3 is not listed on IDEAS
    3. Pan, I. & Nolan, L.B. & Brown, R.R. & Khan, R. & Van Der Boor, P. & Harris, D.G. & Ghani, R., 2017. "Machine learning for social services: A study of prenatal case management in Illinois," American Journal of Public Health, American Public Health Association, vol. 107(6), pages 938-944.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majd Oteibi & Adam Tamimi & Kaneez Abbas & Gabriel Tamimi & Danesh Khazaei & Hadi Khazaei, 2024. "Advancing Digital Health using AI and Machine Learning Solutions for Early Ultrasonic Detection of Breast Disorders in Women," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 518-527, November.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    4. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    5. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Yue Sun & Songmin Dai & Jide Li & Yin Zhang & Xiaoqiang Li, 2019. "Tooth-Marked Tongue Recognition Using Gradient-Weighted Class Activation Maps," Future Internet, MDPI, vol. 11(2), pages 1-12, February.
    7. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    8. Wenjuan Fan & Jingnan Liu & Shuwan Zhu & Panos M. Pardalos, 2020. "Investigating the impacting factors for the healthcare professionals to adopt artificial intelligence-based medical diagnosis support system (AIMDSS)," Annals of Operations Research, Springer, vol. 294(1), pages 567-592, November.
    9. Young Jae Kim & Seung Seog Han & Hee Joo Yang & Sung Eun Chang, 2020. "Prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-9, June.
    10. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    11. Mara Giavina-Bianchi & Raquel Machado de Sousa & Vitor Zago de Almeida Paciello & William Gois Vitor & Aline Lissa Okita & Renata Prôa & Gian Lucca dos Santos Severino & Anderson Alves Schinaid & Rafa, 2021. "Implementation of artificial intelligence algorithms for melanoma screening in a primary care setting," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-13, September.
    12. Jordi Munoz-Muriedas, 2021. "Large scale meta-analysis of preclinical toxicity data for target characterisation and hypotheses generation," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-22, June.
    13. Magdalena K Sobol & Sarah A Finkelstein, 2018. "Predictive pollen-based biome modeling using machine learning," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-29, August.
    14. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    15. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Muhammad Waseem Ahmad & Anthony Mouraud & Yacine Rezgui & Monjur Mourshed, 2018. "Deep Highway Networks and Tree-Based Ensemble for Predicting Short-Term Building Energy Consumption," Energies, MDPI, vol. 11(12), pages 1-21, December.
    17. Erik Brynjolfsson & Xiang Hui & Meng Liu, 2019. "Does Machine Translation Affect International Trade? Evidence from a Large Digital Platform," Management Science, INFORMS, vol. 65(12), pages 5449-5460, December.
    18. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
    19. Hanning Ying & Xiaoqing Liu & Min Zhang & Yiyue Ren & Shihui Zhen & Xiaojie Wang & Bo Liu & Peng Hu & Lian Duan & Mingzhi Cai & Ming Jiang & Xiangdong Cheng & Xiangyang Gong & Haitao Jiang & Jianshuai, 2024. "A multicenter clinical AI system study for detection and diagnosis of focal liver lesions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Priti Bansal & Sumit Kumar & Ritesh Srivastava & Saksham Agarwal, 2021. "Using Transfer Learning and Hierarchical Classifier to Diagnose Melanoma From Dermoscopic Images," International Journal of Healthcare Information Systems and Informatics (IJHISI), IGI Global, vol. 16(2), pages 73-86, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.