IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45325-9.html
   My bibliography  Save this article

A multicenter clinical AI system study for detection and diagnosis of focal liver lesions

Author

Listed:
  • Hanning Ying

    (Zhejiang University School of Medicine)

  • Xiaoqing Liu

    (Deepwise Artificial Intelligence Laboratory)

  • Min Zhang

    (Zhejiang University)

  • Yiyue Ren

    (Zhejiang University)

  • Shihui Zhen

    (Zhejiang University)

  • Xiaojie Wang

    (Zhejiang University)

  • Bo Liu

    (Deepwise Artificial Intelligence Laboratory)

  • Peng Hu

    (Zhejiang University School of Medicine)

  • Lian Duan

    (Zhejiang University School of Medicine)

  • Mingzhi Cai

    (Zhangzhou Municipal Hospital of Fujian Province)

  • Ming Jiang

    (Quzhou People’s Hospital)

  • Xiangdong Cheng

    (Cancer Hospital of the University of Chinese Academy of Sciences (ZheJiang Cancer Hospital))

  • Xiangyang Gong

    (Zhejiang Provincial People’s Hospital)

  • Haitao Jiang

    (Cancer Hospital of the University of Chinese Academy of Sciences (ZheJiang Cancer Hospital))

  • Jianshuai Jiang

    (Ningbo First Hospital)

  • Jianjun Zheng

    (University of Chinese Academy of Sciences (Ningbo No.2 Hospital))

  • Kelei Zhu

    (Yinzhou People’s Hospital)

  • Wei Zhou

    (Affiliated Central Hospital of Huzhou University)

  • Baochun Lu

    (Shaoxing People’s Hospital)

  • Hongkun Zhou

    (The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University)

  • Yiyu Shen

    (The Second Hospital of Jiaxing Affiliated Hospital of Jiaxing University)

  • Jinlin Du

    (Jinhua Municipal Central Hospital)

  • Mingliang Ying

    (Jinhua Municipal Central Hospital)

  • Qiang Hong

    (Jinhua GuangFU Hospital)

  • Jingang Mo

    (Taizhou Municipal Central Hospital)

  • Jianfeng Li

    (The First People’s Hospital of Wenling)

  • Guanxiong Ye

    (Lishui People’s Hospital)

  • Shizheng Zhang

    (Zhejiang University School of Medicine)

  • Hongjie Hu

    (Zhejiang University School of Medicine)

  • Jihong Sun

    (Zhejiang University School of Medicine)

  • Hui Liu

    (Zhejiang University School of Medicine)

  • Yiming Li

    (Deepwise Artificial Intelligence Laboratory)

  • Xingxin Xu

    (Deepwise Artificial Intelligence Laboratory)

  • Huiping Bai

    (Deepwise Artificial Intelligence Laboratory)

  • Shuxin Wang

    (Deepwise Artificial Intelligence Laboratory)

  • Xin Cheng

    (Xiamen University)

  • Xiaoyin Xu

    (Harvard Medical School)

  • Long Jiao

    (Imperial College London)

  • Risheng Yu

    (Second Affiliated Hospital of Zhejiang University School of Medicine)

  • Wan Yee Lau

    (the Chinese University of Hong Kong)

  • Yizhou Yu

    (Department of Computer Science, The University of Hong Kong)

  • Xiujun Cai

    (Zhejiang University School of Medicine)

Abstract

Early and accurate diagnosis of focal liver lesions is crucial for effective treatment and prognosis. We developed and validated a fully automated diagnostic system named Liver Artificial Intelligence Diagnosis System (LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of 0.940 for benign and 0.692 for malignant lesions, outperforming junior radiologists (benign: 0.830-0.890, malignant: 0.230-0.360) and being on par with senior radiologists (benign: 0.920-0.950, malignant: 0.550-0.650). Furthermore, with the assistance of LiAIDS, the diagnostic accuracy of all radiologists improved. For benign and malignant lesions, junior radiologists’ F1-scores improved to 0.936-0.946 and 0.667-0.680 respectively, while seniors improved to 0.950-0.961 and 0.679-0.753. Additionally, in a triage study of 13,192 consecutive patients, LiAIDS automatically classified 76.46% of patients as low risk with a high NPV of 99.0%. The evidence suggests that LiAIDS can serve as a routine diagnostic tool and enhance the diagnostic capabilities of radiologists for liver lesions.

Suggested Citation

  • Hanning Ying & Xiaoqing Liu & Min Zhang & Yiyue Ren & Shihui Zhen & Xiaojie Wang & Bo Liu & Peng Hu & Lian Duan & Mingzhi Cai & Ming Jiang & Xiangdong Cheng & Xiangyang Gong & Haitao Jiang & Jianshuai, 2024. "A multicenter clinical AI system study for detection and diagnosis of focal liver lesions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45325-9
    DOI: 10.1038/s41467-024-45325-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45325-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45325-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    3. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    4. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    6. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    7. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    8. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
    10. Cristian Simionescu & Adrian Iftene, 2022. "Deep Learning Research Directions in Medical Imaging," Mathematics, MDPI, vol. 10(23), pages 1-25, November.
    11. Jingui Zhang & Chuangji Meng & Cunlu Xu & Jingyong Ma & Wei Su, 2022. "Deep Transfer Learning Method Based on Automatic Domain Alignment and Moment Matching," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    12. Yuming Jiang & Zhicheng Zhang & Wei Wang & Weicai Huang & Chuanli Chen & Sujuan Xi & M. Usman Ahmad & Yulan Ren & Shengtian Sang & Jingjing Xie & Jen-Yeu Wang & Wenjun Xiong & Tuanjie Li & Zhen Han & , 2023. "Biology-guided deep learning predicts prognosis and cancer immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Marta Mazur & Artnora Ndokaj & Divyambika Catakapatri Venugopal & Michela Roberto & Cristina Albu & Maciej Jedliński & Silverio Tomao & Iole Vozza & Grzegorz Trybek & Livia Ottolenghi & Fabrizio Guerr, 2021. "In Vivo Imaging-Based Techniques for Early Diagnosis of Oral Potentially Malignant Disorders—Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
    14. Khalid A. Ibrahim & Kristin S. Grußmayer & Nathan Riguet & Lely Feletti & Hilal A. Lashuel & Aleksandra Radenovic, 2023. "Label-free identification of protein aggregates using deep learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Songhee Cheon & Jungyoon Kim & Jihye Lim, 2019. "The Use of Deep Learning to Predict Stroke Patient Mortality," IJERPH, MDPI, vol. 16(11), pages 1-12, May.
    16. Hailong He & Christine Schönmann & Mathias Schwarz & Benedikt Hindelang & Andrei Berezhnoi & Susanne Annette Steimle-Grauer & Ulf Darsow & Juan Aguirre & Vasilis Ntziachristos, 2022. "Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Zilong Zhou & Hang Yuan & Xin Cai, 2023. "Rock Thin Section Image Identification Based on Convolutional Neural Networks of Adaptive and Second-Order Pooling Methods," Mathematics, MDPI, vol. 11(5), pages 1-27, March.
    18. Dani Kiyasseh & Aaron Cohen & Chengsheng Jiang & Nicholas Altieri, 2024. "A framework for evaluating clinical artificial intelligence systems without ground-truth annotations," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Marios Constantinou & Themis Exarchos & Aristidis G. Vrahatis & Panagiotis Vlamos, 2023. "COVID-19 Classification on Chest X-ray Images Using Deep Learning Methods," IJERPH, MDPI, vol. 20(3), pages 1-13, January.
    20. Yun-Tsan Chang & Pacôme Prompsy & Susanne Kimeswenger & Yi-Chien Tsai & Desislava Ignatova & Olesya Pavlova & Christoph Iselin & Lars E. French & Mitchell P. Levesque & François Kuonen & Malgorzata Bo, 2024. "MHC-I upregulation safeguards neoplastic T cells in the skin against NK cell-mediated eradication in mycosis fungoides," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45325-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.