IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225697.html
   My bibliography  Save this article

Quantitative dynamics of Salmonella and E. coli in feces of feedlot cattle treated with ceftiofur and chlortetracycline

Author

Listed:
  • Naomi Ohta
  • Bo Norby
  • Guy H Loneragan
  • Javier Vinasco
  • Henk C den Bakker
  • Sara D Lawhon
  • Keri N Norman
  • Harvey M Scott

Abstract

Antibiotic use in beef cattle is a risk factor for the expansion of antimicrobial-resistant Salmonella populations. However, actual changes in the quantity of Salmonella in cattle feces following antibiotic use have not been investigated. Previously, we observed an overall reduction in Salmonella prevalence in cattle feces associated with both ceftiofur crystalline-free acid (CCFA) and chlortetracycline (CTC) use; however, during the same time frame the prevalence of multidrug-resistant Salmonella increased. The purpose of this analysis was to quantify the dynamics of Salmonella using colony counting (via a spiral-plating method) and hydrolysis probe-based qPCR (TaqMan® qPCR). Additionally, we quantified antibiotic-resistant Salmonella by plating to agar containing antibiotics at Clinical & Laboratory Standards Institute breakpoint concentrations. Cattle were randomly assigned to 4 treatment groups across 16 pens in 2 replicates consisting of 88 cattle each. Fecal samples from Days 0, 4, 8, 14, 20, and 26 were subjected to quantification assays. Duplicate qPCR assays targeting the Salmonella invA gene were performed on total community DNA for 1,040 samples. Diluted fecal samples were spiral plated on plain Brilliant Green Agar (BGA) and BGA with ceftriaxone (4 μg/ml) or tetracycline (16 μg/ml). For comparison purposes, indicator non-type-specific (NTS) E. coli were also quantified by direct spiral plating. Quantity of NTS E. coli and Salmonella significantly decreased immediately following CCFA treatment. CTC treatment further decreased the quantity of Salmonella but not NTS E. coli. Effects of antibiotics on the imputed log10 quantity of Salmonella were analyzed via a multi-level mixed linear regression model. The invA gene copies decreased with CCFA treatment by approximately 2 log10 gene copies/g feces and remained low following additional CTC treatment. The quantities of tetracycline or ceftriaxone-resistant Salmonella were approximately 4 log10 CFU/g feces; however, most of the samples were under the quantification limit. The results of this study demonstrate that antibiotic use decreases the overall quantity of Salmonella in cattle feces in the short term; however, the overall quantities of antimicrobial-resistant NTS E. coli and Salmonella tend to remain at a constant level throughout.

Suggested Citation

  • Naomi Ohta & Bo Norby & Guy H Loneragan & Javier Vinasco & Henk C den Bakker & Sara D Lawhon & Keri N Norman & Harvey M Scott, 2019. "Quantitative dynamics of Salmonella and E. coli in feces of feedlot cattle treated with ceftiofur and chlortetracycline," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0225697
    DOI: 10.1371/journal.pone.0225697
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225697
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225697&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katharine M. Ng & Jessica A. Ferreyra & Steven K. Higginbottom & Jonathan B. Lynch & Purna C. Kashyap & Smita Gopinath & Natasha Naidu & Biswa Choudhury & Bart C. Weimer & Denise M. Monack & Justin L., 2013. "Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens," Nature, Nature, vol. 502(7469), pages 96-99, October.
    2. Tim C Boyer & Tim Hanson & Randall S Singer, 2013. "Estimation of Low Quantity Genes: A Hierarchical Model for Analyzing Censored Quantitative Real-Time PCR Data," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James D Brunner & Nicholas Chia, 2020. "Minimizing the number of optimizations for efficient community dynamic flux balance analysis," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-20, September.
    2. Yiping Cao & Meredith R. Raith & Paul D. Smith & John F. Griffith & Stephen B. Weisberg & Alexander Schriewer & Andrew Sheldon & Chris Crompton & Geremew G. Amenu & Jason Gregory & Joe Guzman & Kelly , 2017. "Regional Assessment of Human Fecal Contamination in Southern California Coastal Drainages," IJERPH, MDPI, vol. 14(8), pages 1-15, August.
    3. Ren Dodge & Eric W. Jones & Haolong Zhu & Benjamin Obadia & Daniel J. Martinez & Chenhui Wang & Andrés Aranda-Díaz & Kevin Aumiller & Zhexian Liu & Marco Voltolini & Eoin L. Brodie & Kerwyn Casey Huan, 2023. "A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Vinod Nikhra, 2019. "Therapeutic Potential of Gut Microbiome Manipulation: Concepts in Fecal Microbiota Transplantation," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 1-9, June.
    5. Jordy Evan Sulaiman & Jaron Thompson & Yili Qian & Eugenio I. Vivas & Christian Diener & Sean M. Gibbons & Nasia Safdar & Ophelia S. Venturelli, 2024. "Elucidating human gut microbiota interactions that robustly inhibit diverse Clostridioides difficile strains across different nutrient landscapes," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    6. Elvin Koh & In Young Hwang & Hui Ling Lee & Ryan De Sotto & Jonathan Wei Jie Lee & Yung Seng Lee & John C. March & Matthew Wook Chang, 2022. "Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Alexander Y. G. Yip & Olivia G. King & Oleksii Omelchenko & Sanjana Kurkimat & Victoria Horrocks & Phoebe Mostyn & Nathan Danckert & Rohma Ghani & Giovanni Satta & Elita Jauneikaite & Frances J. Davie, 2023. "Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. K. E. Huus & T. T. Hoang & A. Creus-Cuadros & M. Cirstea & S. L. Vogt & K. Knuff-Janzen & P. J. Sansonetti & P. Vonaesch & B. B. Finlay, 2021. "Cross-feeding between intestinal pathobionts promotes their overgrowth during undernutrition," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Giuliano Bonanomi & Mohamed Idbella & Ahmed M. Abd-ElGawad, 2021. "Microbiota Management for Effective Disease Suppression: A Systematic Comparison between Soil and Mammals Gut," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    10. Vinod Nikhra, 2019. "Therapeutic Potential of Gut Microbiome Manipulation: Concepts in Fecal Microbiota Transplantation," Current Research in Diabetes & Obesity Journal, Juniper Publishers Inc., vol. 11(1), pages 9-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.