IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225554.html
   My bibliography  Save this article

Location, location, location: Close ties among older continuing care retirement community residents

Author

Listed:
  • Liat Ayalon
  • Inbal Yahav

Abstract

This study examines two theoretical explanations for the existence of close ties among continuing care retirement community residents: the attractiveness theory, which suggests that residents who possess certain attributes are more likely to be perceived as appealing to others; and the homophily theory, which argues that individuals are more likely to have close ties with people who share similar attributes. As a variant of the homophily theory, we also examined whether sharing a physical location makes the existence of certain connections more likely. Data from four continuing care retirement communities were used. To test the attractiveness theory, correlations between the number of individuals who named a person as a significant contact (ego’s in-degree) and ego attributes were examined. To test the homophily theory, the median value of existing ties was compared against all possible social ties as though they were randomly formed. Finally, to further test the role of the institutional culture against various motivations that drive social ties—attractiveness and homophily—we used link prediction models with random forests. In support of the homophily theory, beyond the institutional culture, the only consistent predictor of the existence of close ties among residents was sharing a wing in the retirement community (geographic proximity). Therefore, we discuss the role of the physical location in the lives of older adults.

Suggested Citation

  • Liat Ayalon & Inbal Yahav, 2019. "Location, location, location: Close ties among older continuing care retirement community residents," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-17, November.
  • Handle: RePEc:plo:pone00:0225554
    DOI: 10.1371/journal.pone.0225554
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225554
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225554&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Markus H. Schafer, 2015. "Editor's choice On the Locality of Asymmetric Close Relations: Spatial Proximity and Health Differences in a Senior Community," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 70(1), pages 100-110.
    2. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    3. Fragkiskos Papadopoulos & Maksim Kitsak & M. Ángeles Serrano & Marián Boguñá & Dmitri Krioukov, 2012. "Popularity versus similarity in growing networks," Nature, Nature, vol. 489(7417), pages 537-540, September.
    4. Markus H. Schafer, 2011. "Health and Network Centrality in a Continuing Care Retirement Community," The Journals of Gerontology: Series B, The Gerontological Society of America, vol. 66(6), pages 795-803.
    5. Raf Guns & Ronald Rousseau, 2014. "Recommending research collaborations using link prediction and random forest classifiers," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1461-1473, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaowen Xi & Jiaqi Wei & Ying Guo & Weiyu Duan, 2022. "Academic collaborations: a recommender framework spanning research interests and network topology," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6787-6808, November.
    2. Yan Qi & Xin Zhang & Zhengyin Hu & Bin Xiang & Ran Zhang & Shu Fang, 2022. "Choosing the right collaboration partner for innovation: a framework based on topic analysis and link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5519-5550, September.
    3. Bütün, Ertan & Kaya, Mehmet, 2019. "A pattern based supervised link prediction in directed complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1136-1145.
    4. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    5. Lu Huang & Xiang Chen & Yi Zhang & Yihe Zhu & Suyi Li & Xingxing Ni, 2021. "Dynamic network analytics for recommending scientific collaborators," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 8789-8814, November.
    6. Wahid-Ul-Ashraf, Akanda & Budka, Marcin & Musial, Katarzyna, 2019. "How to predict social relationships — Physics-inspired approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1110-1129.
    7. Junya Wang & Yi-Jiao Zhang & Cong Xu & Jiaze Li & Jiachen Sun & Jiarong Xie & Ling Feng & Tianshou Zhou & Yanqing Hu, 2024. "Reconstructing the evolution history of networked complex systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Jinseok Kim & Jana Diesner, 2019. "Formational bounds of link prediction in collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 687-706, May.
    9. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    10. Eustache Mêgnigbêto, 2018. "Correlation Between Transmission Power and Some Indicators Used to Measure the Knowledge-Based Economy: Case of Six OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 9(4), pages 1168-1183, December.
    11. Yifei Zhou & Shaoyong Li & Yaping Liu, 2020. "Graph-based Method for App Usage Prediction with Attributed Heterogeneous Network Embedding," Future Internet, MDPI, vol. 12(3), pages 1-16, March.
    12. Jascha-Alexander Koch & Michael Siering, 2019. "The recipe of successful crowdfunding campaigns," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(4), pages 661-679, December.
    13. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    14. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    15. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    16. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    18. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    19. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    20. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.