IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0221615.html
   My bibliography  Save this article

A randomized pilot efficacy and safety trial of diazoxide choline controlled-release in patients with Prader-Willi syndrome

Author

Listed:
  • Virginia Kimonis
  • Abhilasha Surampalli
  • Marie Wencel
  • June-Anne Gold
  • Neil M Cowen

Abstract

Introduction: Prader-Willi syndrome (PWS) is a complex genetic condition characterized by hyperphagia, hypotonia, low muscle mass, excess body fat, developmental delays, intellectual disability, behavioral problems, and growth hormone deficiency. This study evaluated the safety and efficacy of orally administered Diazoxide Choline Controlled-Release Tablets (DCCR) in subjects with PWS. Method: This was a single-center, Phase II study and included a 10-week Open-Label Treatment Period during which subjects were dose escalated, followed by a 4-week Double-Blind, Placebo-Controlled Treatment Period. Results: Five female and eight male overweight or obese, adolescent and adult subjects with genetically-confirmed PWS with an average age of 15.5±2.9 years were enrolled in the study. There was a statistically significant reduction in hyperphagia at the end of the Open-Label Treatment Period (-4.32, n = 11, p = 0.006). The onset of effect on hyperphagia was rapid and greater reductions in hyperphagia were seen in subjects with moderate to severe Baseline hyperphagia (-5.50, n = 6, p = 0.03), in subjects treated with the highest dose (-6.25, n = 4, p = 0.08), and in subjects with moderate to severe Baseline hyperphagia treated with the highest dose (-7.83, n = 3, p = 0.09). DCCR treatment resulted in a reduction in the number of subjects displaying aggressive behaviors (-57.1%, n = 10, p = 0.01), clinically-relevant reductions in fat mass (-1.58 kg, n = 11, p = 0.02) and increases in lean body mass (2.26 kg, n = 11, p = 0.003). There was a corresponding decrease in waist circumference, and trends for improvements in lipids and insulin resistance. The most common adverse events were peripheral edema and transient increases in glucose. Many of the adverse events were common medical complications of PWS and diazoxide. Conclusion: DCCR treatment appears to address various unmet needs associated with PWS, including hyperphagia and aggressive behaviors in this proof-of-concept study. If the results were replicated in a larger scale study, DCCR may be a preferred therapeutic option for patients with PWS.

Suggested Citation

  • Virginia Kimonis & Abhilasha Surampalli & Marie Wencel & June-Anne Gold & Neil M Cowen, 2019. "A randomized pilot efficacy and safety trial of diazoxide choline controlled-release in patients with Prader-Willi syndrome," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-20, September.
  • Handle: RePEc:plo:pone00:0221615
    DOI: 10.1371/journal.pone.0221615
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221615
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0221615&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0221615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Johan Ruud & Sophie M. Steculorum & Jens C. Brüning, 2017. "Neuronal control of peripheral insulin sensitivity and glucose metabolism," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    2. D. Spanswick & M. A. Smith & V. E. Groppi & S. D. Logan & M. L. J. Ashford, 1997. "Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels," Nature, Nature, vol. 390(6659), pages 521-525, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Hammerschmidt & Sophie M. Steculorum & Cécile L. Bandet & Almudena Río-Martín & Lukas Steuernagel & Vivien Kohlhaas & Marvin Feldmann & Luis Varela & Adam Majcher & Marta Quatorze Correia & Rh, 2023. "CerS6-dependent ceramide synthesis in hypothalamic neurons promotes ER/mitochondrial stress and impairs glucose homeostasis in obese mice," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Yuhao Huang & Jeffrey B. Wang & Jonathon J. Parker & Rajat Shivacharan & Rayhan A. Lal & Casey H. Halpern, 2023. "Spectro-spatial features in distributed human intracranial activity proactively encode peripheral metabolic activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0221615. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.