IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220994.html
   My bibliography  Save this article

A non-linear analysis of Turing pattern formation

Author

Listed:
  • Yanyan Chen
  • Javier Buceta

Abstract

Reaction-diffusion schemes are widely used to model and interpret phenomena in various fields. In that context, phenomena driven by Turing instabilities are particularly relevant to describe patterning in a number of biological processes. While the conditions that determine the appearance of Turing patterns and their wavelength can be easily obtained by a linear stability analysis, the estimation of pattern amplitudes requires cumbersome calculations due to non-linear terms. Here we introduce an expansion method that makes possible to obtain analytical, approximated, solutions of the pattern amplitudes. We check and illustrate the reliability of this methodology with results obtained from numerical simulations.

Suggested Citation

  • Yanyan Chen & Javier Buceta, 2019. "A non-linear analysis of Turing pattern formation," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0220994
    DOI: 10.1371/journal.pone.0220994
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220994
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220994&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Isaac Salazar-Ciudad & Jukka Jernvall, 2010. "A computational model of teeth and the developmental origins of morphological variation," Nature, Nature, vol. 464(7288), pages 583-586, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunpeng Wang & Jon Olav Vik & Stig W Omholt & Arne B Gjuvsland, 2013. "Effect of Regulatory Architecture on Broad versus Narrow Sense Heritability," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-12, May.
    2. R. Allena & J. Muñoz & D. Aubry, 2013. "Diffusion-reaction model for embryo development," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 235-248.
    3. Yunpeng Wang & Arne B Gjuvsland & Jon Olav Vik & Nicolas P Smith & Peter J Hunter & Stig W Omholt, 2012. "Parameters in Dynamic Models of Complex Traits are Containers of Missing Heritability," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-9, April.
    4. González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.