IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003053.html
   My bibliography  Save this article

Effect of Regulatory Architecture on Broad versus Narrow Sense Heritability

Author

Listed:
  • Yunpeng Wang
  • Jon Olav Vik
  • Stig W Omholt
  • Arne B Gjuvsland

Abstract

Additive genetic variance (VA) and total genetic variance (VG) are core concepts in biomedical, evolutionary and production-biology genetics. What determines the large variation in reported VA/VG ratios from line-cross experiments is not well understood. Here we report how the VA/VG ratio, and thus the ratio between narrow and broad sense heritability (h2/H2), varies as a function of the regulatory architecture underlying genotype-to-phenotype (GP) maps. We studied five dynamic models (of the cAMP pathway, the glycolysis, the circadian rhythms, the cell cycle, and heart cell dynamics). We assumed genetic variation to be reflected in model parameters and extracted phenotypes summarizing the system dynamics. Even when imposing purely linear genotype to parameter maps and no environmental variation, we observed quite low VA/VG ratios. In particular, systems with positive feedback and cyclic dynamics gave more non-monotone genotype-phenotype maps and much lower VA/VG ratios than those without. The results show that some regulatory architectures consistently maintain a transparent genotype-to-phenotype relationship, whereas other architectures generate more subtle patterns. Our approach can be used to elucidate these relationships across a whole range of biological systems in a systematic fashion.Author Summary: The broad-sense heritability of a trait is the proportion of phenotypic variance attributable to genetic causes, while the narrow-sense heritability is the proportion attributable to additive gene effects. A better understanding of what underlies variation in the ratio of the two heritability measures, or the equivalent ratio of additive variance VA to total genetic variance VG, is important for production biology, biomedicine and evolution. We find that reported VA/VG values from line crosses vary greatly and ask if biological mechanisms underlying such differences can be elucidated by linking computational biology models with genetics. To this end, we made use of models of the cAMP pathway, the glycolysis, circadian rhythms, the cell cycle and cardiocyte dynamics. We assumed additive gene action from genotypes to model parameters and studied the resulting GP maps and VA/VG ratios of system-level phenotypes. Our results show that some types of regulatory architectures consistently preserve a transparent genotype-to-phenotype relationship, whereas others generate more subtle patterns. Particularly, systems with positive feedback and cyclic dynamics resulted in more non-monotonicity in the GP map leading to lower VA/VG ratios. Our approach can be used to elucidate the VA/VG relationship across a whole range of biological systems in a systematic fashion.

Suggested Citation

  • Yunpeng Wang & Jon Olav Vik & Stig W Omholt & Arne B Gjuvsland, 2013. "Effect of Regulatory Architecture on Broad versus Narrow Sense Heritability," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-12, May.
  • Handle: RePEc:plo:pcbi00:1003053
    DOI: 10.1371/journal.pcbi.1003053
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003053
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003053&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew V. Rockman, 2008. "Reverse engineering the genotype–phenotype map with natural genetic variation," Nature, Nature, vol. 456(7223), pages 738-744, December.
    2. Isaac Salazar-Ciudad & Jukka Jernvall, 2010. "A computational model of teeth and the developmental origins of morphological variation," Nature, Nature, vol. 464(7288), pages 583-586, March.
    3. Yunpeng Wang & Arne B Gjuvsland & Jon Olav Vik & Nicolas P Smith & Peter J Hunter & Stig W Omholt, 2012. "Parameters in Dynamic Models of Complex Traits are Containers of Missing Heritability," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-9, April.
    4. Gertz, Jason & Gerke, Justin P. & Cohen, Barak A., 2010. "Epistasis in a quantitative trait captured by a molecular model of transcription factor interactions," Theoretical Population Biology, Elsevier, vol. 77(1), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunpeng Wang & Arne B Gjuvsland & Jon Olav Vik & Nicolas P Smith & Peter J Hunter & Stig W Omholt, 2012. "Parameters in Dynamic Models of Complex Traits are Containers of Missing Heritability," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-9, April.
    2. Yanyan Chen & Javier Buceta, 2019. "A non-linear analysis of Turing pattern formation," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-9, August.
    3. Benjamin A Logsdon & Jason Mezey, 2010. "Gene Expression Network Reconstruction by Convex Feature Selection when Incorporating Genetic Perturbations," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-13, December.
    4. R. Allena & J. Muñoz & D. Aubry, 2013. "Diffusion-reaction model for embryo development," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 235-248.
    5. Lingfei Wang & Tom Michoel, 2017. "Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-26, August.
    6. Andreas Wagner, 2015. "Causal Drift, Robust Signaling, and Complex Disease," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-29, March.
    7. González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.
    8. Marika Plöthner & Martin Frank & J.-Matthias Graf Schulenburg, 2017. "Cost analysis of whole genome sequencing in German clinical practice," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 18(5), pages 623-633, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.