IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220881.html
   My bibliography  Save this article

Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China

Author

Listed:
  • Tobias Rentschler
  • Philipp Gries
  • Thorsten Behrens
  • Helge Bruelheide
  • Peter Kühn
  • Steffen Seitz
  • Xuezheng Shi
  • Stefan Trogisch
  • Thomas Scholten
  • Karsten Schmidt

Abstract

As limited resources, soils are the largest terrestrial sinks of organic carbon. In this respect, 3D modelling of soil organic carbon (SOC) offers substantial improvements in the understanding and assessment of the spatial distribution of SOC stocks. Previous three-dimensional SOC modelling approaches usually averaged each depth increment for multi-layer two-dimensional predictions. Therefore, these models are limited in their vertical resolution and thus in the interpretability of the soil as a volume as well as in the accuracy of the SOC stock predictions. So far, only few approaches used spatially modelled depth functions for SOC predictions. This study implemented and evaluated an approach that compared polynomial, logarithmic and exponential depth functions using non-linear machine learning techniques, i.e. multivariate adaptive regression splines, random forests and support vector machines to quantify SOC stocks spatially and depth-related in the context of biodiversity and ecosystem functioning research. The legacy datasets used for modelling include profile data for SOC and bulk density (BD), sampled at five depth increments (0-5, 5-10, 10-20, 20-30, 30-50 cm). The samples were taken in an experimental forest in the Chinese subtropics as part of the biodiversity and ecosystem functioning (BEF) China experiment. Here we compared the depth functions by means of the results of the different machine learning approaches obtained based on multi-layer 2D models as well as 3D models. The main findings were (i) that 3rd degree polynomials provided the best results for SOC and BD (R2 = 0.99 and R2 = 0.98; RMSE = 0.36% and 0.07 g cm-3). However, they did not adequately describe the general asymptotic trend of SOC and BD. In this respect the exponential (SOC: R2 = 0.94; RMSE = 0.56%) and logarithmic (BD: R2 = 84; RMSE = 0.21 g cm-3) functions provided more reliable estimates. (ii) random forests with the exponential function for SOC correlated better with the corresponding 2.5D predictions (R2: 0.96 to 0.75), compared to the 3rd degree polynomials (R2: 0.89 to 0.15) which support vector machines fitted best. We recommend not to use polynomial functions with sparsely sampled profiles, as they have many turning points and tend to overfit the data on a given profile. This may limit the spatial prediction capacities. Instead, less adaptive functions with a higher degree of generalisation such as exponential and logarithmic functions should be used to spatially map sparse vertical soil profile datasets. We conclude that spatial prediction of SOC using exponential depth functions, in conjunction with random forests is well suited for 3D SOC stock modelling, and provides much finer vertical resolutions compared to 2.5D approaches.

Suggested Citation

  • Tobias Rentschler & Philipp Gries & Thorsten Behrens & Helge Bruelheide & Peter Kühn & Steffen Seitz & Xuezheng Shi & Stefan Trogisch & Thomas Scholten & Karsten Schmidt, 2019. "Comparison of catchment scale 3D and 2.5D modelling of soil organic carbon stocks in Jiangxi Province, PR China," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-23, August.
  • Handle: RePEc:plo:pone00:0220881
    DOI: 10.1371/journal.pone.0220881
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220881
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220881&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    3. Chong Chen & Kelin Hu & Hong Li & Anping Yun & Baoguo Li, 2015. "Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-15, June.
    4. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongqi Zhang & Jingzhang Li & Chun-Chih Tsui & Zueng-Sang Chen, 2020. "The Study of Gaining More Detailed Variability Information of Soil Organic Carbon in Surface Soils and Its Significance to Enriching the Existing Soil Database," Sustainability, MDPI, vol. 12(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    2. Matthew N Ahmadi & Alok Chowdhury & Toby Pavey & Stewart G Trost, 2020. "Laboratory-based and free-living algorithms for energy expenditure estimation in preschool children: A free-living evaluation," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
    3. Rachel Sippy & Daniel F Farrell & Daniel A Lichtenstein & Ryan Nightingale & Megan A Harris & Joseph Toth & Paris Hantztidiamantis & Nicholas Usher & Cinthya Cueva Aponte & Julio Barzallo Aguilar & An, 2020. "Severity Index for Suspected Arbovirus (SISA): Machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(2), pages 1-20, February.
    4. Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
    5. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    6. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    9. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    10. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    11. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    12. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    13. Hendrawan, Dienda C P & Musshoff, Oliver, 2022. "Oil Palm Smallholder Farmers' Livelihood Resilience and Decision Making in Replanting," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322441, Agricultural and Applied Economics Association.
    14. Man-Jing Li & Jia-Xu Han & Mao Zhu & Yuan-Biao Zhang, 2019. "The True Valuation of Land Use Project in China Considering Ecosystem Services," Modern Applied Science, Canadian Center of Science and Education, vol. 13(10), pages 1-46, October.
    15. Ping Shen & Lijuan Wu & Ziwen Huo & Jiaying Zhang, 2023. "A Study on the Spatial Pattern of the Ecological Product Value of China’s County-Level Regions Based on GEP Evaluation," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    16. Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
    17. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    18. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    19. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    20. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.