IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0217240.html
   My bibliography  Save this article

Participation shifts explain degree distributions in a human communications network

Author

Listed:
  • C Ben Gibson
  • Norbou Buchler
  • Blaine Hoffman
  • Claire-Genevieve La Fleur

Abstract

Human interpersonal communications drive political, technological, and economic systems, placing importance on network link prediction as a fundamental problem of the sciences. These systems are often described at the network-level by degree counts —the number of communication links associated with individuals in the network—that often follow approximate Pareto distributions, a divergence from Poisson-distributed counts associated with random chance. A defining challenge is to understand the inter-personal dynamics that give rise to such heavy-tailed degree distributions at the network-level; primarily, these distributions are explained by preferential attachment, which, under certain conditions, can create power law distributions; preferential attachment’s prediction of these distributions breaks down, however, in conditions with no network growth. Analysis of an organization’s email network suggests that these degree distributions may be caused by the existence of individual participation-shift dynamics that are necessary for coherent communication between humans. We find that the email network’s degree distribution is best explained by turn-taking and turn-continuing norms present in most social network communication. We thus describe a mechanism to explain a long-tailed degree distribution in conditions with no network growth.

Suggested Citation

  • C Ben Gibson & Norbou Buchler & Blaine Hoffman & Claire-Genevieve La Fleur, 2019. "Participation shifts explain degree distributions in a human communications network," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-13, May.
  • Handle: RePEc:plo:pone00:0217240
    DOI: 10.1371/journal.pone.0217240
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217240
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0217240&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0217240?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thong Pham & Paul Sheridan & Hidetoshi Shimodaira, 2015. "PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
    2. Albert-László Barabási, 2005. "The origin of bursts and heavy tails in human dynamics," Nature, Nature, vol. 435(7039), pages 207-211, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    3. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    4. Wang, Cheng-Jun & Wu, Lingfei, 2016. "The scaling of attention networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 196-204.
    5. Simon DeDeo, 2016. "Conflict and Computation on Wikipedia: A Finite-State Machine Analysis of Editor Interactions," Future Internet, MDPI, vol. 8(3), pages 1-23, July.
    6. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    7. Baltakys, Kęstutis & Kanniainen, Juho & Saramäki, Jari & Kivelä, Mikko, 2023. "Investor trade allocation patterns in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 210(C), pages 191-209.
    8. Diao, Su-Meng & Liu, Yun & Zeng, Qing-An & Luo, Gui-Xun & Xiong, Fei, 2014. "A novel opinion dynamics model based on expanded observation ranges and individuals’ social influences in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 220-228.
    9. Zhou, Bin & Xie, Jia-Rong & Yan, Xiao-Yong & Wang, Nianxin & Wang, Bing-Hong, 2017. "A model of task-deletion mechanism based on the priority queueing system of Barabási," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 415-421.
    10. Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
    11. Zhenpeng Li & Xijin Tang & Zhenjie Hong, 2022. "Collective attention dynamic induced by novelty decay," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(8), pages 1-11, August.
    12. Koen Zwet & Ana I. Barros & Tom M. Engers & Peter M. A. Sloot, 2022. "Emergence of protests during the COVID-19 pandemic: quantitative models to explore the contributions of societal conditions," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    13. Huan-Kai Peng & Hao-Chih Lee & Jia-Yu Pan & Radu Marculescu, 2016. "Data-Driven Engineering of Social Dynamics: Pattern Matching and Profit Maximization," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-21, January.
    14. Li, Bo & Sun, Duoyong & Bai, Guanghan, 2017. "Empirical research on evolutionary behavior of covert network with preference measurement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 33-43.
    15. Qianqian Liu & Qun Wang, 2017. "A comparative study on uncooperative search models in survivor search and rescue," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 843-857, November.
    16. Sur, Souvik & Ganguly, Niloy & Mukherjee, Animesh, 2015. "Attack tolerance of correlated time-varying social networks with well-defined communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 98-107.
    17. Kota Yamada & Atsunori Kanemura, 2020. "Simulating bout-and-pause patterns with reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-21, November.
    18. Muaz Niazi & Amir Hussain, 2011. "Agent-based computing from multi-agent systems to agent-based models: a visual survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 479-499, November.
    19. Bent Flyvbjerg & Alexander Budzier & Daniel Lunn, 2021. "Regression to the tail: Why the Olympics blow up," Environment and Planning A, , vol. 53(2), pages 233-260, March.
    20. Pan, Junshan & Hu, Hanping & Liu, Ying, 2014. "Human behavior during Flash Crowd in web surfing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 212-219.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0217240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.