IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0215652.html
   My bibliography  Save this article

Determinants of unit nonresponse in multi-mode data collection: A multilevel analysis

Author

Listed:
  • Finaba Berete
  • Johan Van der Heyden
  • Stefaan Demarest
  • Rana Charafeddine
  • Lydia Gisle
  • Elise Braekman
  • Jean Tafforeau
  • Geert Molenberghs

Abstract

Background: Multi-mode data collection is widely used in surveys. Since several modes of data collection are successively applied in such design (e.g. self-administered questionnaire after face-to-face interview), partial nonresponse occurs if participants fail to complete all stages of the data collection. Although such nonresponse might seriously impact estimates, it remains currently unexplored. This study investigates the determinants of nonresponse to a self-administered questionnaire after having participated in a face-to-face interview. Methods: Data from the Belgian Health Interview Survey 2013 were used to identify determinants of nonresponse to self-administered questionnaire (n = 1,464) among those who had completed the face-to-face interview (n = 8,133). The association between partial nonresponse and potential determinants was explored through multilevel logistic regression models, encompassing a random interviewer effect. Results: Significant interviewer effects were found. Almost half (46.6%) of the variability in nonresponse was attributable to the interviewers, even in the analyses controlling for the area as potential confounder. Partial nonresponse was higher among youngsters, non-Belgian participants, people with a lower educational levels and those belonging to a lower income household, residents of Brussels and Wallonia, and people with poor perceived health. Higher odds of nonresponse were found for interviews done in the last quarters of the survey-year. Regarding interviewer characteristics, only the total number of interviews carried out throughout the survey was significantly associated with nonresponse to the self-administered questionnaire. Conclusions: The results indicate that interviewers play a crucial role in nonresponse to the self-administered questionnaire. Participant characteristics, interview circumstances and interviewer characteristics only partly explain the interviewer variability. Future research should examine further interviewer characteristics that impact nonresponse. The current study emphasises the importance of training and motivating interviewers to reduce nonresponse in multi-mode data collection.

Suggested Citation

  • Finaba Berete & Johan Van der Heyden & Stefaan Demarest & Rana Charafeddine & Lydia Gisle & Elise Braekman & Jean Tafforeau & Geert Molenberghs, 2019. "Determinants of unit nonresponse in multi-mode data collection: A multilevel analysis," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-18, April.
  • Handle: RePEc:plo:pone00:0215652
    DOI: 10.1371/journal.pone.0215652
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0215652
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0215652&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0215652?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anton Nederhof, 1987. "When neutrality is negative," Quality & Quantity: International Journal of Methodology, Springer, vol. 21(4), pages 425-432, December.
    2. G. Blom, Annelies & D. de Leeuw, Edith & J. Hox, Joop, 2010. "Interviewer effects on nonresponse in the European Social Survey," ISER Working Paper Series 2010-25, Institute for Social and Economic Research.
    3. Durrant, Gabriele B. & Steele, Fiona, 2009. "Multilevel modelling of refusal and non-contact in household surveys: evidence from six UK Government surveys," LSE Research Online Documents on Economics 50112, London School of Economics and Political Science, LSE Library.
    4. Gabriele B. Durrant & Fiona Steele, 2009. "Multilevel modelling of refusal and non‐contact in household surveys: evidence from six UK Government surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(2), pages 361-381, April.
    5. Sigrid Haunberger, 2010. "The effects of interviewer, respondent and area characteristics on cooperation in panel surveys: a multilevel approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 957-969, August.
    6. Annelies G. Blom & Edith D. de Leeuw & Joop J. Hox, 2010. "Interviewer Effects on Nonresponse," MEA discussion paper series 10202, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    7. Rebecca Vassallo & Gabriele Durrant & Peter Smith, 2017. "Separating interviewer and area effects by using a cross-classified multilevel logistic model: simulation findings and implications for survey designs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 531-550, February.
    8. Johan Heyden & Stefaan Demarest & Koen Van Herck & Dirk Bacquer & Jean Tafforeau & Herman Van Oyen, 2014. "Association between variables used in the field substitution and post-stratification adjustment in the Belgian health interview survey and non-response," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 59(1), pages 197-206, February.
    9. Pamela Campanelli & Colm O'Muircheartaigh, 1999. "Interviewers, Interviewer Continuity, and Panel Survey Nonresponse," Quality & Quantity: International Journal of Methodology, Springer, vol. 33(1), pages 59-76, February.
    10. Michelle Dey & Meichun Mohler-Kuo, 2013. "An analysis of non-response in a Swiss national survey," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(2), pages 323-326, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Amos, 2018. "Interviewer effects on patterns of nonresponse: Evaluating the impact on the reasons for contraceptive nonuse in the Indonesia and the Philippines DHS," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 39(14), pages 415-430.
    2. Rebecca Vassallo & Gabriele Durrant & Peter Smith, 2017. "Separating interviewer and area effects by using a cross-classified multilevel logistic model: simulation findings and implications for survey designs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 531-550, February.
    3. Wagner James & Olson Kristen, 2018. "An Analysis of Interviewer Travel and Field Outcomes in Two Field Surveys," Journal of Official Statistics, Sciendo, vol. 34(1), pages 211-237, March.
    4. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    5. Geert Loosveldt & Koen Beullens, 2014. "A Procedure to Assess Interviewer Effects on Nonresponse Bias," SAGE Open, , vol. 4(1), pages 21582440145, February.
    6. Gabriele B. Durrant & Sylke V. Schnepf, 2018. "Which schools and pupils respond to educational achievement surveys?: a focus on the English Programme for International Student Assessment sample," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1057-1075, October.
    7. Alireza Rezaee & Mojtaba Ganjali & Ehsan Bahrami Samani, 2022. "Sample selection bias with multiple dependent selection rules: an application to survey data analysis with multilevel nonresponse," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 158(1), pages 1-15, December.
    8. Roger Tourangeau & J. Michael Brick & Sharon Lohr & Jane Li, 2017. "Adaptive and responsive survey designs: a review and assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 203-223, January.
    9. Adrian Chadi, 2019. "Dissatisfied with life or with being interviewed? Happiness and the motivation to participate in a survey," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(3), pages 519-553, October.
    10. Durrant Gabriele B. & Maslovskaya Olga & Smith Peter W. F., 2017. "Using Prior Wave Information and Paradata: Can They Help to Predict Response Outcomes and Call Sequence Length in a Longitudinal Study?," Journal of Official Statistics, Sciendo, vol. 33(3), pages 801-833, September.
    11. Adriana Ana Maria Davidescu & Monica Roman & Vasile Alecsandru Strat & Mihaela Mosora, 2019. "Regional Sustainability, Individual Expectations and Work Motivation: A Multilevel Analysis," Sustainability, MDPI, vol. 11(12), pages 1-23, June.
    12. Plewis Ian & Shlomo Natalie, 2017. "Using Response Propensity Models to Improve the Quality of Response Data in Longitudinal Studies," Journal of Official Statistics, Sciendo, vol. 33(3), pages 753-779, September.
    13. Walejko Gina & Wagner James, 2018. "A Study of Interviewer Compliance in 2013 and 2014 Census Test Adaptive Designs," Journal of Official Statistics, Sciendo, vol. 34(3), pages 649-670, September.
    14. Barbara Felderer & Jannis Kueck & Martin Spindler, 2021. "Big Data meets Causal Survey Research: Understanding Nonresponse in the Recruitment of a Mixed-mode Online Panel," Papers 2102.08994, arXiv.org.
    15. Kristen Olson, 2013. "Paradata for Nonresponse Adjustment," The ANNALS of the American Academy of Political and Social Science, , vol. 645(1), pages 142-170, January.
    16. Francisco Perales & Bernard Baffour & Francis Mitrou, 2015. "Ethnic Differences in the Quality of the Interview Process and Implications for Survey Analysis: The Case of Indigenous Australians," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-20, June.
    17. Khudnitskaya, Alesia S., 2009. "Microenvironment-specific Effects in the Application Credit Scoring Model," MPRA Paper 23175, University Library of Munich, Germany.
    18. Maddalena Cavicchioli & Michele Lalla, 2022. "Evidences from survey data and fiscal data: nonresponse and measurement errors in annual incomes," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 587-615, September.
    19. Wuyts Celine & Loosveldt Geert, 2020. "Measurement of Interviewer Workload within the Survey and an Exploration of Workload Effects on Interviewers’ Field Efforts and Performance," Journal of Official Statistics, Sciendo, vol. 36(3), pages 561-588, September.
    20. Sarah Miller & David Amirault & Laurent Martin, 2017. "What’s Up with Unit Non-Response in the Bank of Canada’s Business Outlook Survey? The Effect of Staff Tenure," Discussion Papers 17-11, Bank of Canada.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0215652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.