IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0212845.html
   My bibliography  Save this article

Characterizing multicity urban traffic conditions using crowdsourced data

Author

Listed:
  • Divya Jayakumar Nair
  • Flavien Gilles
  • Sai Chand
  • Neeraj Saxena
  • Vinayak Dixit

Abstract

Road traffic congestion continues to manifest and propagate in cities around the world. The recent technological advancements in intelligent traveler information have a strong influence on the route choice behavior of drivers by enabling them to be more flexible in selecting their routes. Measuring traffic congestion in a city, understanding its spatial dispersion, and investigating whether the congestion patterns are stable (temporally, such as on a day-to-day basis) are critical to developing effective traffic management strategies. In this study, with the help of Google Maps API, we gather traffic speed data of 29 cities across the world over a 40-day period. We present generalized congestion and network stability metrics to compare congestion levels between these cities. We find that (a) traffic congestion is related to macroeconomic characteristics such as per capita income and population density of these cities, (b) congestion patterns are mostly stable on a day-to-day basis, and (c) the rate of spatial dispersion of congestion is smaller in congested cities, i.e. the spatial heterogeneity is less sensitive to increase in delays. This study compares the traffic conditions across global cities on a common datum using crowdsourced data which is becoming readily available for research purposes. This information can potentially assist practitioners to tailor macroscopic network congestion and reliability management policies. The comparison of different cities can also lead to benchmarking and standardization of the policies that have been used to date.

Suggested Citation

  • Divya Jayakumar Nair & Flavien Gilles & Sai Chand & Neeraj Saxena & Vinayak Dixit, 2019. "Characterizing multicity urban traffic conditions using crowdsourced data," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
  • Handle: RePEc:plo:pone00:0212845
    DOI: 10.1371/journal.pone.0212845
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212845
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212845&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0212845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Varaiya, Pravin, 2001. "Freeway Performance Measurement System: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2cx2x2s6, Institute of Transportation Studies, UC Berkeley.
    2. Varaiya, Pravin, 2001. "Freeway Performance Measurement System, PeMS v3, Phase 1: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt20p1j2w7, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Travis Waller & Sai Chand & Aleksa Zlojutro & Divya Nair & Chence Niu & Jason Wang & Xiang Zhang & Vinayak V. Dixit, 2021. "Rapidex: A Novel Tool to Estimate Origin–Destination Trips Using Pervasive Traffic Data," Sustainability, MDPI, vol. 13(20), pages 1-27, October.
    2. Sai Chand & Emily Moylan & S. Travis Waller & Vinayak Dixit, 2020. "Analysis of Vehicle Breakdown Frequency: A Case Study of New South Wales, Australia," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    3. Joshua Ezekiel Rito & Neil Stephen Lopez & Jose Bienvenido Manuel Biona, 2021. "Modeling Traffic Flow, Energy Use, and Emissions Using Google Maps and Google Street View: The Case of EDSA, Philippines," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    4. Vinayak Dixit & Divya Jayakumar Nair & Sai Chand & Michael W Levin, 2020. "A simple crowdsourced delay-based traffic signal control," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-12, April.
    5. Sai Chand & Zhuolin Li & Abdulmajeed Alsultan & Vinayak V. Dixit, 2022. "Comparing and Contrasting the Impacts of Macro-Level Factors on Crash Duration and Frequency," IJERPH, MDPI, vol. 19(9), pages 1-19, May.
    6. Vandana Singh & Sudip Kumar Sahana & Vandana Bhattacharjee, 2022. "Nature-Inspired Cloud–Crowd Computing for Intelligent Transportation System," Sustainability, MDPI, vol. 14(23), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Golob, Thomas F. & Recker, Wilfred W., 2004. "A method for relating type of crash to traffic flow characteristics on urban freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 53-80, January.
    2. Golob, Thomas F. & Recker, Wilfred W. & Alvarez, Veronica M., 2003. "A Tool to Evaluate the Safety Effects of Changes in Freeway Traffic Flow," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1kn30323, Institute of Transportation Studies, UC Berkeley.
    3. Zhu, Zheng & Li, Xinwei & Liu, Wei & Yang, Hai, 2019. "Day-to-day evolution of departure time choice in stochastic capacity bottleneck models with bounded rationality and various information perceptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 168-192.
    4. Xiaoyuan Feng & Yue Chen & Hongbo Li & Tian Ma & Yilong Ren, 2023. "Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction," Sustainability, MDPI, vol. 15(9), pages 1-13, May.
    5. Golob, Thomas F. & Recker, Wilfred W., 2003. "A Method for Relating Type of Crash to Traffic Flow Characteristics on Urban Freeways," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7n64466d, Institute of Transportation Studies, UC Berkeley.
    6. Yajun Ge & Jiannan Wang & Bo Zhang & Fan Peng & Jing Ma & Chenyu Yang & Yue Zhao & Ming Liu, 2024. "Spatial–Temporal-Correlation-Constrained Dynamic Graph Convolutional Network for Traffic Flow Forecasting," Mathematics, MDPI, vol. 12(19), pages 1-18, October.
    7. Zhong, Zijia & Lee, Joyoung, 2019. "The effectiveness of managed lane strategies for the near-term deployment of cooperative adaptive cruise control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 257-270.
    8. Varaiya, Pravin, 2001. "Freeway Performance Measurement System: Final Report," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt2cx2x2s6, Institute of Transportation Studies, UC Berkeley.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0212845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.