IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0212220.html
   My bibliography  Save this article

Multifractality of posture modulates multisensory perception of stand-on-ability

Author

Listed:
  • Jonathan K Doyon
  • Alen Hajnal
  • Tyler Surber
  • Joseph D Clark
  • Damian G Kelty-Stephen

Abstract

By definition, perception is a multisensory process that unfolds in time as a complex sequence of exploratory activities of the organism. In such a system perception and action are integrated, and multiple energy arrays are available simultaneously. Perception of affordances interweaves sensory and motor activities into meaningful behavior given task constraints. The present contribution offers insight into the manner in which perception and action usher the organism through competent functional apprehension of its surroundings. We propose that the tensegrity structure of the body, manifested via multifractality of exploratory bodily movements informs perception of affordances. The affordance of stand-on-ability of ground surfaces served as the experimental paradigm. Observers viewed a surface set to a discrete angle and attempted to match it haptically with a continuously adjustable surface occluded by a curtain, or felt an occluded surface set to a discrete angle then matched it visually with a continuously adjustable visible surface. The complex intertwining of perception and action was demonstrated by the interactions of multifractality of postural sway with multiple energy arrays, responses, and changing geometric task demands.

Suggested Citation

  • Jonathan K Doyon & Alen Hajnal & Tyler Surber & Joseph D Clark & Damian G Kelty-Stephen, 2019. "Multifractality of posture modulates multisensory perception of stand-on-ability," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-32, February.
  • Handle: RePEc:plo:pone00:0212220
    DOI: 10.1371/journal.pone.0212220
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212220
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0212220&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0212220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Damian G Kelty-Stephen, 2018. "Multifractal evidence of nonlinear interactions stabilizing posture for phasmids in windy conditions: A reanalysis of insect postural-sway data," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    2. Stephen, Damian G. & Hsu, Wen-Hao & Young, Diana & Saltzman, Elliot L. & Holt, Kenneth G. & Newman, Dava J. & Weinberg, Marc & Wood, Robert J. & Nagpal, Radhika & Goldfield, Eugene C., 2012. "Multifractal fluctuations in joint angles during infant spontaneous kicking reveal multiplicativity-driven coordination," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1201-1219.
    3. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    3. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    4. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    5. Luis Gil-Alana, 2004. "Forecasting the real output using fractionally integrated techniques," Applied Economics, Taylor & Francis Journals, vol. 36(14), pages 1583-1589.
    6. Alketa Bejko & Etleva Peta & Belinda Xarba, 2015. "The Evaluation of the Drafting Process of Regional’s Development Strategies in Albania. the Research on Gjirokastra’s Region," European Journal of Interdisciplinary Studies Articles, Revistia Research and Publishing, vol. 1, ejis_v1_i.
    7. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Pigorsch, Uta, 2008. "Measuring and modeling risk using high-frequency data," SFB 649 Discussion Papers 2008-045, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. SangKun Bae & Mark J. Jensen, 1998. "Long-Run Neutrality in a Long-Memory Model," Macroeconomics 9809006, University Library of Munich, Germany, revised 21 Apr 1999.
    9. Jinquan Liu & Tingguo Zheng & Jianli Sui, 2008. "Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty," Psychometrika, Springer;The Psychometric Society, vol. 3(2), pages 240-254, June.
    10. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    11. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    12. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    13. Jesus Gonzalo & Tae-Hwy Lee, 2000. "On the robustness of cointegration tests when series are fractionally intergrated," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 821-827.
    14. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    15. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    16. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    17. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    18. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    19. Laurence Copeland, 2007. "Arbitrage Bounds and the Time Series Properties of the Discount on UK Closed‐End Mutual Funds," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 34(1‐2), pages 313-330, January.
    20. Baillie, Richard T. & Kapetanios, George & Papailias, Fotis, 2014. "Bandwidth selection by cross-validation for forecasting long memory financial time series," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 129-143.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0212220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.