IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0208838.html
   My bibliography  Save this article

Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up pairwise genetic map comparison

Author

Listed:
  • Lisa De Mattéo
  • Yan Holtz
  • Vincent Ranwez
  • Sèverine Bérard

Abstract

Genetic maps order genetic markers along chromosomes. They are, for instance, extensively used in marker-assisted selection to accelerate breeding programs. Even for the same species, people often have to deal with several alternative maps obtained using different ordering methods or different datasets, e.g. resulting from different segregating populations. Having efficient tools to identify the consistency and discrepancy of alternative maps is thus essential to facilitate genetic map comparisons. We propose to encode genetic maps by bucket order, a kind of order, which takes into account the blurred parts of the marker order while being an efficient data structure to achieve low complexity algorithms. The main result of this paper is an O(n log(n)) procedure to identify the largest agreements between two bucket orders of n elements, their Longest Common Subsequence (LCS), providing an efficient solution to highlight discrepancies between two genetic maps. The LCS of two maps, being the largest set of their collinear markers, is used as a building block to compute pairwise map congruence, to visually emphasize maker collinearity and in some scaffolding methods relying on genetic maps to improve genome assembly. As the LCS computation is a key subroutine of all these genetic map related tools, replacing the current LCS subroutine of those methods by ours –to do the exact same work but faster– could significantly speed up those methods without changing their accuracy. To ease such transition we provide all required algorithmic details in this self contained paper as well as an R package implementing them, named LCSLCIS, which is freely available at: https://github.com/holtzy/LCSLCIS.

Suggested Citation

  • Lisa De Mattéo & Yan Holtz & Vincent Ranwez & Sèverine Bérard, 2018. "Efficient algorithms for Longest Common Subsequence of two bucket orders to speed up pairwise genetic map comparison," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-19, December.
  • Handle: RePEc:plo:pone00:0208838
    DOI: 10.1371/journal.pone.0208838
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208838
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0208838&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0208838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jachner, Stefanie & Gerald van den Boogaart, K. & Petzoldt, Thomas, 2007. "Statistical Methods for the Qualitative Assessment of Dynamic Models with Time Delay (R Package qualV)," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i08).
    2. Franz J. Brandenburg & Andreas Gleißner & Andreas Hofmeier, 2013. "The nearest neighbor Spearman footrule distance for bucket, interval, and partial orders," Journal of Combinatorial Optimization, Springer, vol. 26(2), pages 310-332, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petzoldt, Thomas & Rinke, Karsten, 2007. "simecol: An Object-Oriented Framework for Ecological Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i09).
    2. repec:jss:jstsof:22:i01 is not listed on IDEAS
    3. Barbosa, Carolina Cerqueira & Calijuri, Maria do Carmo & Anjinho, Phelipe da Silva & dos Santos, André Cordeiro Alves, 2023. "An integrated modeling approach to predict trophic state changes in a large Brazilian reservoir," Ecological Modelling, Elsevier, vol. 476(C).
    4. Erden, Lutfi & Ozkan, Ibrahim, 2014. "Determinants of international transmission of business cycles to Turkish economy," Economic Modelling, Elsevier, vol. 36(C), pages 383-390.
    5. Kneib, Thomas & Petzoldt, Thomas, 2007. "Introduction to the Special Volume on "Ecology and Ecological Modeling in R"," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 22(i01).
    6. Piotr Boniecki & Małgorzata Idzior-Haufa & Agnieszka A. Pilarska & Krzysztof Pilarski & Alicja Kolasa-Wiecek, 2019. "Neural Classification of Compost Maturity by Means of the Self-Organising Feature Map Artificial Neural Network and Learning Vector Quantization Algorithm," IJERPH, MDPI, vol. 16(18), pages 1-9, September.
    7. repec:jss:jstsof:22:i09 is not listed on IDEAS
    8. Portell, Xavier & Gras, Anna & Ginovart, Marta, 2014. "INDISIM-Saccha, an individual-based model to tackle Saccharomyces cerevisiae fermentations," Ecological Modelling, Elsevier, vol. 279(C), pages 12-23.
    9. Piou, Cyril & Berger, Uta & Grimm, Volker, 2009. "Proposing an information criterion for individual-based models developed in a pattern-oriented modelling framework," Ecological Modelling, Elsevier, vol. 220(17), pages 1957-1967.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0208838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.